基于双通道分层协同的CEH-YOLOv8鱼体病害检测方法
作者:
作者单位:

1.沈阳工业大学信息科学与工程学院/沈阳工业大学辽宁省机器视觉重点实验室,沈阳 110870;2.沈阳理工大学自动化与电气工程学院,沈阳 110159

作者简介:

荣弘扬,E-mail:ronghy0716@outlook.com

通讯作者:

汤永华,E-mail: tangyonghua@sut.edu.cn

中图分类号:

TP391.4

基金项目:

辽宁省机器人联合基金项目(20180520022); 辽宁省应用基础研究计划项目(2023JH2/101300237)


A method of detecting fish diseases with CEH-YOLOv8 based on dual-channel and hierarchical synergism
Author:
Affiliation:

1.College of Information Science and Engineering/Liaoning Province Key Laboratory of Machine Vision,Shenyang Polytechnic University,Shenyang 110870,China;2.College of Automation and Electrical Engineering, Shenyang University of Technology, Shenyang 110159, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [23]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对在鱼体病害检测中病害形状不规则、纹理不清晰以及病斑分散导致难以定位真实病害区域的问题,提出一种基于双通道分层协同的CEH-YOLOv8鱼体病害检测方法。首先,提出一种双通道特征提取网络,增强模型对不规则以及不清晰纹理病斑的提取能力。然后,提出一种高效通道空间注意力机制(ECSA),提升模型对分布式目标的识别能力。同时为强化改进后的主干网络,提出一种分层协同的特征金字塔网络(HBFPN),对主干网络提取出的信息进行分层次特征融合,增强模型的特征表达能力。试验结果显示,CEH-YOLOv8 网络对鱼体病害的识别精确率、召回率和mAP分别达到83.2%、72.5%和76.2%,相比于SOTA方法YOLOv10提升了6.9、11.6和11.9百分点,相比原模型提高4.3、6.9和6百分点,单帧图像推理时间为9.1 ms。以上结果表明,改进后的YOLOv8网络可以精准筛选出带病鱼体,可用于提早发现渔业病害以减少经济损失。

    Abstract:

    A method of detecting fish diseases with CEH-YOLOv8 based on dual-channel and hierarchical synergism was developed to solve the problems of the irregular shapes, unclear textures, and scattered disease spots making it difficult to localize the true lesion areas in the detection of fish diseases. A dual-channel feature extraction network was introduced to enhance the ability of model to extract irregular lesion areas with unclear textures. Then, an efficient channel spatial attention (ECSA) mechanism was proposed to improve the capability of model to recognize distributed targets. A hierarchical and balanced feature pyramid network (HBFPN) for was presented to reinforce the improved backbone network and perform hierarchical feature fusion on the information extracted from the backbone network at different levels to enhance the ability of model to express feature. The results showed that the CEH-YOLOv8 network had an accuracy rate of 83.2%, a recall rate of 72.5%, and a mean average precision (mAP) of 76.2% in detecting fish diseases, respectively. Compared with the state-of-the-art (SOAT)YOLOv10 method and the original model, it increased the accuracy rate, recall rate, and mAP by 6.9, 11.6, and 11.9 percent points, and 4.3, 6.9, and 6 percent points, respectively. The inference time for a single frame was 9.1 ms. It is indicated that the improved YOLOv8 network can accurately screen fish with diseases and be used for early detection of fishery diseases to reduce economic losses.

    图1 数据集处理Fig.1 Datasets processing
    图2 CEH-YOLOv8网络结构Fig.2 CEH-YOLOv8 network structure
    图3 双通道主干网络Fig.3 Dual-channel backbone network
    图4 DSConv原理图Fig.4 Dynamic snake convolution schematic diagram
    图5 ECSA模型具体结构Fig.5 Specific structure of the ECSA module
    图6 PANet(A)、BiFPN(B)与HBFPN(C)网络结构图Fig.6 Network structure diagram of PANet(A),BiFPN(B) and HBFPN(C)
    图7 对比不同Backbone与FPN组合的可视化检测效果Fig.7 Compare the visual detection effect of different Backbone and FPN combinations
    图8 基线模型与本研究模型的检测效果对比Fig.8 Comparison of baseline model and the detection effect of the study model
    图9 YOLOv8改进前后热力图对比Fig.9 Comparison of thermal map before and after YOLOv8 improvement
    表 1 消融实验结果对比Table 1 Comparison results of ablation test results
    表 2 不同Backbone与FPN的组合效果分析Table 2 Analysis of combination effect of different Backbone and FPN
    表 3 不同网络模型比较结果Table 3 Comparison results of different network models
    参考文献
    [1] ALI TOUFIQUE K,FAROOK S N,BELTON B.Managing fisheries for food security:implications from demand analysis[J].Marine resource economics,2018,33(1):61-85.
    [2] HUANG Y P,KHABUSI S P.A CNN-OSELM multi-layer fusion network with attention mechanism for fish disease recognition in aquaculture[J].IEEE access,2023,11:58729-58744.
    [3] AZHAR A S B M,HARUN N H B,YUSOFF N B,et al. Image enhancement on underwater images for protozoan white spot fish disease detection[C]//2022 international conference on intelligent systems and computer vision (ISCV). Fez,Morocco:IEEE,2022: 1-4.
    [4] 汤永华,石非凡,林森,等.基于融合非局部操作的YOLOv5s高密度锦鲤鱼苗检测方法[J].浙江农业学报,2024,36(4):952-967. TANG Y H,SHI F F,LIN S,et al.YOLOv5s high-density koi fry detection method based on fusion non-local operation[J].Acta agriculturae zhejiangensis,2024,36(4):952-967(in Chinese with English abstract).
    [5] NOMAN M A,HOSSEN M S,ISLAM M,et al. HYBRID-CNN: for identification of rohu fish disease[C]//2022 13th international conferenceon computing communication and networking technologies (ICCCNT). Kharagpur,India:IEEE,2022:1-6.
    [6] KHABUSI S P,HUANG Y P,LEE M F. Attention-Based mechanism for fish disease classification in aquaculture[C]//2023 international conference on system science and engineering (ICSSE). Ho Chi Minh,Vietnam:IEEE,2023: 95-100.
    [7] 陈科,周勇,薛明洋,等.基于机器视觉和改进YOLOv5s的鲫病害轻量级无损检测模型[J].水生生物学报,2024,48(7):1141-1148. CHEN K,ZHOU Y,XUE M Y,et al.Lightweight nondestructive detection model of crucian carp disease based on machine vision and improved YOLOv5s[J].Acta hydrobiologica sinica,2024,48(7):1141-1148 (in Chinese with English abstract).
    [8] YU G,ZHANG J,CHEN A,et al. Detection and identification of fish skin health status referring to four common diseases based on improved YOLOv4 model[J/OL]. Fishes,2023,8(4): 186[2024-07-01]. https://doi.org/10.3390/fishes8040186.
    [9] 魏立明,赵奎,王宁,等.细粒度鱼类疫病图像识别算法模型[J].激光与光电子学进展,2023,60(16):119-128. WEI L M,ZHAO K,WANG N,et al.Fine-Grained fish disease image recognition algorithm model[J].Laser & optoelectronics progress,2023,60(16):119-128 (in Chinese with English abstract).
    [10] LI D L,LI X,WANG Q,et al.Advanced techniques for the intelligent diagnosis of fish diseases:a review[J/OL].Animals,2022,12(21):2938[2024-07-01].https://doi.org/10.3390/ani12212938.
    [11] HATZILYGEROUDIS I,DIMITROPOULOS K,KOVAS K,et al.Expert systems for farmed fish disease diagnosis:an overview and a proposal[J/OL].Journal of marine science and engineering,2023,11(5):1084[2024-07-01]. https://doi.org/10.3390/jmse11051084.
    [12] MIA M J,BIN MAHMUD R,SADAD M S,et al.An in-depth automated approach for fish disease recognition[J].Journal of King Saud University(computer and information sciences),2022,34(9):7174-7183.
    [13] LI R,WU Y P.Improved YOLO v5 wheat ear detection algorithm based on attention mechanism[J/OL].Electronics,2022,11(11):1673[2024-07-01].https://doi.org/10.3390/electronics11111673 .
    [14] WANG C Y,BOCHKOVSKIY A,LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF international conference on computer vision (ICCV). Vancouver,Canada:IEEE,2023: 7464-7475.
    [15] 陈科. 基于机器视觉和改进YOLOv5s的鲫鱼病害轻量级无损检测模型研究[D].杭州:浙江科技大学,2024.CHEN K. Lightweight nondestructive detection model of Crucian disease based on machine vision and improved YOLOv5s[D].Hangzhou:Zhejiang University of Science and Technology,2024(in Chinese with English abstract).
    [16] 周涛,王骥,麦仁贵.基于改进YOLOv8的实时菠萝成熟度目标检测方法[J].华中农业大学学报,2024,43(5):10-20.ZHOU T,WANG J,MAI R G. Real-time object detection method of pineapple ripeness based on improved YOLOv8[J]. Journal of Huazhong Agricultural University,2024,43(5):10-20.(in Chinese with English abstract).
    [17] QI Y L,HE Y T,QI X M,et al.Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]//2023 IEEE/CVF international conference on computer vision (ICCV).Paris,France:IEEE,2023:6047-6056.
    [18] WANG Q L,WU B G,ZHU P F,et al.ECA-Net:Efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR).Seattle,WA,USA:IEEE,2020:11531-11539.
    [19] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//2017 IEEE conference on computer vision and pattern recognition (CVPR).Honolulu,HI,USA:IEEE,2017:936-944.
    [20] LIU S,QI L,QIN H F,et al.Path aggregation network for instance segmentation[C]//2018 IEEE/CVF conference on computer vision and pattern recognition.Salt Lake City,UT,USA:IEEE,2018:8759-8768.
    [21] TAN M X,PANG R M,LE Q V.Efficientdet:Scalable and efficient object detection[C]//2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR).Seattle,WA,USA.IEEE,2020:10778-10787.
    [22] WANG C Y,YEH I H,MARK LIAO H Y.YOLOv9:Learning what you want to learn using programmable gradient information[C]// Computer vision – ECCV 2024.Cham:Springer Nature Switzerland,2025:1-21.
    [23] WANG A,CHEN H,LIU L H,et al.YOLOv10:Real-Time end-to-end object detection[DB/OL].Arxiv,2024:2405.14458[2024-07-01].https://arxiv.org/abs/2405.14458v2.
    相似文献
    引证文献
引用本文

荣弘扬,汤永华,林森,张志鹏,王腾川,刘兴通.基于双通道分层协同的CEH-YOLOv8鱼体病害检测方法[J].华中农业大学学报,2025,44(2):83-93

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-01
  • 在线发布日期: 2025-04-02
文章二维码