基于XMem-SimAM的半监督猪只视频分割方法
作者:
作者单位:

1.华中农业大学信息学院,武汉 430070;2.农业农村部智慧养殖技术重点实验室,武汉 430070;3.华中农业大学工学院,武汉 430070;4.湖北洪山实验室,武汉 430070

作者简介:

陈萌放,E-mail:1334233852@qq.com

通讯作者:

黎煊,E-mail:lx@mail.hzau.edu.cn

中图分类号:

TP391.4

基金项目:

生猪现代育种技术研发及新品种选育(HBZY2023B006-03);武汉市生物育种重大专项(2022021302024853);华中农业大学-中国农业科学院深圳农业基因组研究所合作基金项目(SZYJY2022031)


XMem-SimAM based semi-supervised video segmentation of pigs
Author:
Affiliation:

1.College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;2.Ministry of Agriculture and Rural Affairs Key Laboratory of Smart Farming for Agricultural Animals, Wuhan 430070 China;3.College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;4.Hubei Hongshan Laboratory, Wuhan 430070, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为解决因猪场复杂环境、猪只动态生长及体型变化等因素导致的猪只精确分割难题,以种猪性能测定过程中动态采食和生长过程的猪只为研究对象,构建一个包括234个视频序列的猪只视频数据集,提出基于XMem-SimAM的半监督猪只视频分割方法。通过引入SimAM注意力进行多尺度特征融合,提升模型在不同尺度下对时序信息的提取能力,捕捉猪只动态移动的时序特征;利用空间-通道注意力模块,强化模型对时序语义特征的权重提取;优化多尺度特征融合策略和上采样模块,充分利用视频序列中的时序关联信息,从细粒度层面提高视频中猪只分割精度。经过测试对比,XMem-SimAM模型在猪只视频数据集上的区域相似度Jaccard、轮廓准确度F、平均度量J&F和Dice系数分别达到96.9、95.8、98.0和98.0,优于MiVOS、STCN、DEVA、XMem++等视频对象分割方法,显示出卓越的分割性能;在推理阶段,处理速度达到58.5 帧/s,内存消耗为795 MB,实现了处理效率与资源利用的良好平衡。结果表明,该方法可应用于猪场复杂环境下动态生长猪只的视频分割。

    Abstract:

    The dynamic feeding and growth process of breeding pigs during the performance testing was used to solve the problem of accurate segmentation of pigs caused by complex environments in pig farms, dynamic growth of pigs, and changes in body size. A pig video dataset consisting of 234 video sequences was constructed. A XMem-SimAM based semi-supervised video segmentation of pigs was proposed. The ability of model to extract temporal information at different scales was improved and the temporal features of pigs' dynamic movements were captured by introducing SimAM attention for multi-scale feature fusion. The spatial-channel attention module was used to enhance the model's extraction of temporal semantic feature weights. The strategy for multi-scale feature fusion and upsampling module were optimized. The temporal correlation information in video sequences was fully utilized to improve the segmentation accuracy of pigs in videos at a fine-grained level. The results of testing and comparison showed that the Jaccard index, contour accuracy F-score, average metric J&F, and the Dice coefficient of of XMem-SimAM model on the pig video dataset was 96.9, 95.8, 98.0, and 98.0, superior to that of video object segmentation methods including MiVOS, STCN, DEVA, and XMem++, demonstrating its outstanding performance of segmentation. The processing speed reached 58.5 frames per second, with a memory consumption of 795 MB at the stage of reasoning, achieving a good balance between the efficiency of processing and the utilization of resource. The proposed method can be applied to video segmentation of dynamically growing pigs in the complex environments of a pig farm.

    图1 数据采集装置Fig.1 Data acquisition device
    图2 像素级别标注样式Fig.2 Pixel level annotation style
    图3 数据增强示例Fig.3 Data augmentation example
    图4 网络模型总体框架图Fig.4 Overall framework diagram of network mode
    图5 查询编码器框架图Fig.5 Query encoder framework diagram
    图6 值编码器框架图Fig.6 Value encoder framework diagram
    图7 分割效果对比Fig.7 Comparison of segmentation effects
    图8 XMem-SimAM与半监督视频对象分割网络的分割效果对比Fig.8 Comparison of segmentation performance between XMem-SimAM and semi-supervised video object segmentation network
    图9 小目标区域分割结果对比Fig.9 Comparison of segmentation results for small target areas
    图10 Grad-CAM特征可视化Fig.10 Grad-CAM feature visualization
    表 1 猪只视频数据集组织形式Table 1 Organizational form of pig video dataset
    表 2 网络评估指标对比Table 2 Comparison of evaluation indicators for validation set networks
    表 3 评估指标对比Table 3 Comparison of evaluation indicators
    表 4 复杂度对比Table 4 Comparison of complexity
    表 5 小目标分割性能对比Table 5 Comparison of small target segmentation performance
    表 6 消融实验结果对比Table 6 Ablation study results comparison
    参考文献
    相似文献
    引证文献
引用本文

陈萌放,徐迪红,李国亮,刘小磊,周明彦,黎煊.基于XMem-SimAM的半监督猪只视频分割方法[J].华中农业大学学报,2025,44(2):17-28

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-16
  • 在线发布日期: 2025-04-02
文章二维码