基于NSGA-Ⅱ与AHP气吸式微型薯排种器排种过程仿真优化与试验
作者:
作者单位:

1.华中农业大学工学院,武汉 430070;2.农业农村部马铃薯生物学与生物技术重点实验室,武汉 430070;3.农业农村部长江中下游农业装备重点实验室,武汉 430070

作者简介:

付锦,E-mail:1446703645@qq.com

通讯作者:

段宏兵,E-mail:duanhb@mail.hzau.edu.cn

中图分类号:

S223.2

基金项目:

国家马铃薯现代农业产业技术体系项目(CARS-09-P08);湖北省农机装备补短板核心技术应用攻关项目(HBSNYT202215);湖北省现代农业产业技术体系项目(HBHZD-ZB-2020-005-08)


Simulation optimization and experiment of seed sowing process using air-suction micro potato seeder based on NSGA-Ⅱ and AHP
Author:
Affiliation:

1.College of Engineering,Huazhong Agricultural University,Wuhan 430070,China;2.Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China;3.Key Laboratory of Agricultural Equipment in the Mid-Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Development,Wuhan 430070,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [24]
  • | | | |
  • 文章评论
    摘要:

    针对现有气吸式微型薯排种器作业时所需负压高、功耗大、漏播严重等问题,依据微型薯的曲率半径,设计环槽型排种盘,增加微型薯贴附排种盘的有效接触面积,从而提高合格指数。运用EDEM与Fluent软件构建气吸式微型薯排种器耦合仿真模型,并以运行参数(真空度、排种盘转速)、结构参数(吸孔直径、吸孔数)为影响因素,以合格指数、漏播指数、重播指数、功率消耗为性能指标设计二次回归正交旋转组合试验。通过耦合仿真获得各影响因素对排种器性能指标的影响结果集,对结果集采用非支配排序算法(NSGA-Ⅱ)进行多目标求解,获取Pareto最优解集;通过层次分析法(AHP)对最优解集进行权重分配后,得到最优的排种器结构与运行参数。结果显示:最优参数值为负压值-5 060 Pa、排种盘转速35 r/min、吸孔数10个、吸孔直径10 mm时,排种器的合格指数为94.18%,漏播指数为3.14%,重播指数为2.68%,功率消耗为11.2 kW。台架试验结果显示:台架试验结果与仿真优化后结果基本保持一致,相对误差为0.97%。

    Abstract:

    A ring groove-type disk of seeder was designed based on the radius of curvature of the micro potato seeds to solve the problems of the operation of existing air-suction micro potato seeder requiring high negative pressure, high power consumption and serious leakage. The effective contact area of the micro potato seed adhering to the disk was increased to improve the qualification index of the air-suction micro potato seeder. A coupled simulation model of an air-suction micro potato seeder was constructed with EDEM and Fluent software. A quadratic regression orthogonal rotation combination experiment was designed with operating parameters including the vacuum degree, rotation speed of seeder disk and structural parameters including the diameter of suction hole, number of suction holes of the seeder as influencing factors, and the qualification index, leakage index, reseeding index, and power consumption as indexes of performance. The result set of the impact of various influencing factors on the indexes of performance of the seeder was obtained through coupling simulation. The non-dominated sorting algorithm (NSGA-Ⅱ) for multi-objective optimization of the result set was used to obtain optimal solution set of Pareto. The optimal structure parameters and operating parameters of seeder were obtained after assigning weights to the optimal solution set using analytic hierarchy process (AHP). The results showed that the optimal parameters were negative pressure value of -5 060 Pa, rotation speed of seeder disk of 35 r/min, number of suction holes of 10, and diameter of suction hole of 10 mm, with the qualification index of the seeder of 94.18%, the leakage index of 3.14%, the reseeding index of 2.68%, and the power consumption of 11.2 kW. The results of bench test showed that the simulation results optimized were basically consistent with the bench test, with a relative error of 0.97%. It is indicated that the combination of multi-objective optimization algorithm and hierarchical analysis process for weight allocation is reasonable and feasible for the performance optimization of air-suction micro potato seeder..

    图1 气吸式微型薯排种器结构爆炸图Fig.1 Exploded view of the structure of air suction micro potato seed metering
    图2 排种器工作区域划分Fig.2 Dividing the working area of the seed metering
    图3 直孔型排种盘Fig.3 Straight hole type seed disc
    图4 环槽型排种盘Fig.4 Circular fluted seed discs
    图5 微型薯种子模型图Fig.5 Micro potato seed model
    图6 排种器网格划分模型Fig.6 Seed metering mesh model
    图7 排种器耦合仿真过程Fig.7 Simulation process of seed metering coupling
    图8 不同影响因素对排种性能的影响Fig.8 Effect of different factors on seed metering performance
    图9 Pareto最优解集Fig.9 Pareto optimal solution set
    图10 排种器层次分析模型Fig.10 AHP analysis model for seed metering
    图11 排种器性能台架试验Fig.11 Eed metering performance bench test
    表 1 离散元仿真参数Table 1 Discrete element simulation parameters
    表 2 二次正交旋转组合试验因素编码Table 2 Experimental factor code
    表 3 二次正交旋转组合试验方案与结果Table 3 Pilot programme and test results
    表 4 合格指数与漏播指数方差分析Table 4 Analysis of variance of qualification index and leakage index
    表 5 重播指数与功率消耗方差分析结果Table 5 Results of analysis of variance of double index and power consumption
    表 6 判断矩阵Table 6 Judgement matrix
    表 7 层次分析结果Table 7 AHP analysis results
    表 8 仿真优化与台架试验结果Table 8 Comparison of simulation optimization results with bench test results
    参考文献
    [1] 王虎存,赵武云,孙伟,等.马铃薯机械化收获技术与装备研究进展[J].农业工程学报,2023,39(14):1-22.WANG H C,ZHAO W Y,SUN W,et al.Research progress on the technology and equipment for potato mechanized harvesting[J].Transactions of the CSAE,2023,39(14):1-22(in Chinese with English abstract).
    [2] 白丽,陈曦,孙洁,等.产业融合视角下中国马铃薯加工业发展问题研究[J].农业工程学报,2019,35(8):316-323.BAI L,CHEN X,SUN J,et al.Development of potato processing industry in China from perspective of industrial integration[J].Transactions of the CSAE,2019,35(8):316-323(in Chinese with English abstract).
    [3] 庞泽,田国奎,王海艳,等.我国马铃薯产业发展现状及展望[J].中国瓜菜,2023,36(7):148-154.PANG Z,TIAN G K,WANG H Y,et al.Present situation and prospect of potato industry in China[J].China cucurbits and vegetables,2023,36(7):148-154(in Chinese with English abstract).
    [4] 张明华,姜有聪,何思禹,等.蔬菜气吸轮式精量排种器设计与试验[J].农业工程学报,2023,39(7):98-109.ZHANG M H,JIANG Y C,HE S Y,et al.Design and experiment of the air suction wheel precision seed metering device for vegetables[J].Transactions of the CSAE,2023,39(7):98-109(in Chinese with English abstract).
    [5] 李骅,马云龙,於海明,等.群组吸孔气吸式芹菜排种器设计与试验[J].农业机械学报,2023,54(3):87-95.LI H,MA Y L,YU H M,et al.Design and experiment of group air-suction type celery seed metering device[J].Transactions of the CSAM,2023,54(3):87-95(in Chinese with English abstract).
    [6] 刘瑞,刘忠军,刘立晶,等.玉米扰动辅助充种高速气吸式排种器设计与试验[J].农业机械学报,2022,53(9):50-59.LIU R,LIU Z J,LIU L J,et al.Design and experiment of corn high speed air suction seed metering device with disturbance assisted seed-filling[J].Transactions of the CSAM,2022,53(9):50-59(in Chinese with English abstract).
    [7] 谢东波,张春岭,吴晓庆,等.扰种齿辅助气吸式大蒜排种器设计与试验[J].农业机械学报,2022,53(2):47-57.XIE D B,ZHANG C L,WU X Q,et al.Design and test of garlic seed placer with seed disturbing tooth assisted air suction[J].Transactions of the CSAM,2022,53(2):47-57(in Chinese with English abstract).
    [8] 李玉环,杨丽,张东兴,等.气吸式玉米精量排种器双侧清种装置设计与试验[J].农业机械学报,2021,52(7):29-39.LI Y H,YANG L,ZHANG D X,et al.Design and test of double-side cleaning mechanism for air-suction maize seed-metering device[J].Transactions of the CSAM,2021,52(7):29-39(in Chinese with English abstract).
    [9] 吕金庆,朱明芳,竹筱歆,等.气吸式马铃薯播种机一体式风机优化设计与试验[J].农业机械学报,2022,53(3):80-90.Lü J Q,ZHU M F,ZHU X X,et al.Optimal design and experiment of integrated fan of air suction potato planter[J].Transactions of the CSAM,2022,53(3):80-90(in Chinese with English abstract).
    [10] BAUER A,MAIER G,REITH-BRAUN M,et al.Benchmarking a DEM-CFD model of an optical belt sorter by experimental comparison[J].Chemie ingenieur technik,2023,95(1/2):256-265.
    [11] NAPOLITANO E S,DI RENZO A,DI MAIO F P.Coarse-grain DEM-CFD modelling of dense particle flow in gas-solid cyclone[J/OL].Separation and purification technology,2022,287:120591[2024-01-15].https://doi.org/10.1016/j.seppur.2022.120591.
    [12] TAKABATAKE K,SAKAI M.Flexible discretization technique for DEM-CFD simulations including thin walls[J].Advanced powder technology,2020,31(5):1825-1837.
    [13] 丁力,杨丽,武德浩,等.基于DEM-CFD耦合的玉米气吸式排种器仿真与试验[J].农业机械学报,2018,49(11):48-57.DING L,YANG L,WU D H,et al.Simulation and experiment of corn air suction seed metering device based on DEM-CFD coupling method[J].Transactions of the CSAM,2018,49(11):48-57(in Chinese with English abstract).
    [14] 史嵩,刘虎,位国建,等.基于DEM-CFD的驱导辅助充种气吸式排种器优化与试验[J].农业机械学报,2020,51(5):54-66.SHI S,LIU H,WEI G J,et al.Optimization and experiment of pneumatic seed metering device with guided assistant filling based on EDEM-CFD[J].Transactions of the CSAM,2020,51(5):54-66(in Chinese with English abstract).
    [15] 王国伟,夏晓蒙,朱庆辉,等.基于DEM-CFD耦合的辅助充种气吸式大豆高速精密排种器设计与试验[J].吉林大学学报(工学版),2022,52(5):1208-1221.WANG G W,XIA X M,ZHU Q H,et al.Design and experiment of soybean high-speed precision vacuum seed metering with auxiliary filling structure based on DEM-CFD[J].Journal of Jilin University (engineering and technology edition),2022,52(5):1208-1221(in Chinese with English abstract).
    [16] 李翊宁,郭康权,陈文强,等.农用车柔性底盘姿态切换参数对切换精度与时间的影响及其优化[J].农业工程学报,2019,35(5):51-61.LI Y N,GUO K Q, CHEN W Q,et al.Effects of attitude switching parameters on switching precision and time of flexible chassis of agricultural vehicles and its optimization[J].Transactions of the CSAE,2019,35(5):51-61(in Chinese with English abstract).
    [17] 姜一啸,吉卫喜,何鑫,等.基于改进非支配排序遗传算法的多目标柔性作业车间低碳调度[J].中国机械工程,2022,33(21):2564-2577.JIANG Y X,JI W X,HE X,et al.Low-carbon scheduling of multi-objective flexible job-shop based on improved NSGA-Ⅱ[J].China mechanical engineering,2022,33(21):2564-2577(in Chinese with English abstract).
    [18] 王宗辉,杨云军,赵弘睿,等.多飞行状态倾转旋翼气动优化设计[J].航空学报,2024,45(9):197-208.WANG Z H,YANG Y J,ZHAO H R,et al.Aerodynamic optimization design of tiltrotor under multiple flight conditions[J].Acta aeronautica et astronautica sinica,2024,45(9):197-208(in Chinese with English abstract).
    [19] 余参参.气吸式微型马铃薯排种器的设计与试验研究[D].武汉:华中农业大学,2020.YU C C.Design and experimental study of air-suction miniature potato seed metering device[D].Wuhan:Huazhong Agricultural University,2020(in Chinese with English abstract).
    [20] 中国农业机械化科学研究院.农业机械设计手册[M].北京:中国农业科学技术出版社,2008.China Agricultural Machinery Science and Research Institute.Design manual of agricultural machinery[M].Beijing:China Agricultural Science and Technology Press,2008(in Chinese).
    [21] 陈海涛,王洪飞,王业成,等.三叶式自动清换种大豆育种气吸排种器设计与试验[J].农业机械学报,2020,51(12):75-85.CHEN H T,WANG H F,WANG Y C,et al.Design and experiment of three-leaf type air-suction seed meter with automatic clear and replace seeds features for soybean plot test[J].Transactions of the CSAM,2020,51(12):75-85(in Chinese with English abstract).
    [22] 韩丹丹,何彬,周毅,等.气吸式密植精量排种器的设计与试验[J].华中农业大学学报,2023,42(1):237-247.HAN D D,HE B,ZHOU Y,et al.Design and experiment of air suction type dense planting precision seed metering device[J].Journal of Huazhong Agricultural University,2023,42(1):237-247(in Chinese with English abstract).
    [23] 丁力,杨丽,张东兴,等.基于DEM-CFD的玉米气吸式排种器种盘设计与试验[J].农业机械学报,2019,50(5):50-60.DING L,YANG L,ZHANG D X,et al.Design and experiment of seed plate of corn air suction seed metering device based on DEM-CFD[J].Transactions of the CSAM,2019,50(5):50-60(in Chinese with English abstract).
    [24] 李成华,高玉芝,张本华.气吹式倾斜圆盘排种器排种性能试验[J].农业机械学报,2008,39(10):90-94.LI C H,GAO Y Z,ZHANG B H.Experiment on dispensing performance of air-sweeping inclined plate seed-metering device[J].Transactions of the CSAM,2008,39(10):90-94(in Chinese with English abstract).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

付锦,段宏兵,韩明兴,蔡兴奎,董汝宁.基于NSGA-Ⅱ与AHP气吸式微型薯排种器排种过程仿真优化与试验[J].华中农业大学学报,2025,44(1):288-298

复制
分享
文章指标
  • 点击次数:9
  • 下载次数: 26
  • HTML阅读次数: 7
  • 引用次数: 0
历史
  • 收稿日期:2024-01-15
  • 在线发布日期: 2025-03-03
文章二维码