数字化无人生猪养殖系统建设及应用
CSTR:
作者:
作者单位:

1.仲恺农业工程学院信息科学与技术学院,广州 510225;2.仲恺农业工程学院自动化学院,广州 510225

作者简介:

郭建军,E-mail:guojianjun@zhku.edu.cn

通讯作者:

刘岳,E-mail:liuyuett@126.com

中图分类号:

S818.9

基金项目:

广东省普通高校特色创新类项目(2023KTSCX048);云浮市省科技创新战略专项市县科技创新支撑项目(2023020101)


Construction and application of digital unmanned system in pig farming
Author:
Affiliation:

1.College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225,China;2.College of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou 510225,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为改善我国绝大多数养殖场面临的生产效率低下、人工清粪、设备体积大、功耗高、感知数据精度低等问题,基于融合机器视觉、大数据、物联网、智能建模、数据库等技术研发数字化无人生猪养殖系统,并建立生猪养殖数字化无人系统的应用示范基地,包括完成生猪养殖智能视觉监控、远程操作系统终端、数字化远程环境监控物联感知及智能科学决策、自动操作提醒、物联智能设备的应用等数字无人化技术。通过建立应用场景,采用人工养殖与数字化无人养殖进行生猪养殖对照试验,以养殖人员工作时长、猪只生长状态和异常行为状态为评价指标。结果显示,本系统通过RKNet结合HAM机制可实现无接触式猪脸识别,猪脸识别模型准确性为99.26%,精确度为99.20%,模型大小仅为1.52 MB。应用数字化无人生猪养殖系统后,养殖员的日均工作时长由4 h降为2.5 h,生猪日均增长质量由1.21 kg提高至1.72 kg,生猪日均异常行为减少36.4%。结果表明,建立数字化无人系统的生猪养殖场能提高生猪养殖效率,降低人工成本,提升生猪养殖业的经济效益。

    Abstract:

    A digital unmanned farming system for pig was developed based on the integration of machine vision, big data, the internet of things (IoT), intelligent modeling, and database technologies to solve the problems including the low efficiency of production, manual removal of manure, large size of equipment, high consumption of power, and the low accuracy of perception data faced by the majority of pig farms in China. A demonstration base for applying digital unmanned systems in pig farming was established. The digital unmanned technologies including intelligent visual monitoring of pig farming, remote operating system terminals, digitalized remote environmental monitoring IoT perception and intelligent scientific decision-making, automatic operation reminders, and the application of IoT intelligent devices were completed. A comparative experiment between the artificial farming and the digital unmanned farming was conducted by establishing application scenarios. The results showed that the established system realized non-contact pig face recognition through RKNet combined with HAM mechanism, with the accuracy of the pig face recognition model of 99.26%, the precision of 99.20%, and the model size of only 1.52 MB. It was deployed in embedded systems. The application of digital unmanned systems in pig farming reduced the average daily working hours of farmer from 4 h to 2.5 h, increased the average daily growth weight of pigs from 1.21 kg to 1.72 kg, and reduced the average daily abnormal behavior of pigs by 36.4%. It is indicated that establishing a digital unmanned system for pig farming can improve the efficiency of farming pig, reducing costs of labor, and increasing the economic benefits of the pig farming industry.

    表 1 无人数字养殖系统应用试验结果Table 1 Results of unmanned digital farming system application
    图1 数字化无人生猪养殖系统总体架构设计Fig.1 Overall architecture design of digital unmanned pig farming system
    图2 数据采集与记录子系统架构Fig.2 Data acquisition and recording subsystem architecture
    图3 终端操作与记录设备实物图Fig.3 Terminal operating and recording equipment
    图4 轨道巡检摄像头Fig.4 Track inspection camera
    图5 改良的电子饲喂站Fig.5 Improved electronic feeding stations
    图6 电子饲喂站使用流程Fig.6 Process of using electronic feeding station
    图7 猪脸识别Fig.7 Pig face recognition
    图8 生猪行为检测识别结果Fig.8 Pig behavioral detection and identification results
    图9 预测流程图Fig.9 Forecasting flowchart
    图10 云服务管理系统架构Fig.10 Cloud services management system architecture
    图11 数字孪生系统Fig.11 Digital twin system
    参考文献
    [1] 农业农村部. 数字农业农村发展规划(2019—2025年)[J]. 畜牧产业,2020,383(2):13-22. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Agriculture rural development plan (2019—2025)[J]. Animal agriculture,2020,383(2):13-22(in Chinese).
    [2] 恽蓓蓓,曾松伟,唐瑞,等.基于IOT的生猪智能养殖集成系统设计[J].中国猪业,2023,18(3):79-84.YUN B B,ZEGN S W,TANG R,et al.Design of intelligent domestic pig breeding integrated system based on Internet of Things technology[J].China swine industry,2023,18(3):79-84 (in Chinese with English abstract).
    [3] 刘雨青,李佳佳,曹守启,等.基于物联网的螃蟹养殖基地监控系统设计及应用[J].农业工程学报,2018,34(16):205-213.LIU Y Q,LI J J,CAO S Q,et al.Design and application of monitoring system for crab breeding base based on Internet of Things[J].Transactions of the CSAE,2018,34(16):205-213 (in Chinese with English abstract).
    [4] 李健,徐帆,谢易宸,等.基于物联网的肉牛智能养殖系统设计与研究[J].吉林农业大学学报,2023,45(4):485-496.LI J,XU F,XIE Y C,et al.Design and research of intelligent beef cattle breeding system based on Internet of Things[J].Journal of Jilin Agricultural University,2023,45(4):485-496 (in Chinese with English abstract).
    [5] 施宏.哺乳母猪行为信息感知与管理平台研究与设计[D]. 南京:南京农业大学,2019. SHI H. Research and design of behavioral information perception and management platform for lactating sow[D]. Nanjing: Nanjing Agricultural University, 2019.
    [6] 赵丽,柳平增,高华,等.猪产业链质量安全溯源系统屠宰环节设计[J].山东农业大学学报(自然科学版),2015,46(3):440-444.ZHAO L,LIU P Z,GAO H,et al.Design for the system of quality safe trace in slaughter tache of pig industry chain[J].Journal of Shandong Agricultural University (natural science edition),2015,46(3):440-444 (in Chinese with English abstract).
    [7] 刘严红,曹克涛,陈新文,等.马智慧养殖大数据平台设计与实现[J].农业大数据学报,2023,5(3):93-103.LIU Y H,CAO K T,CHEN X W,et al.Design and implementation of an equine intelligent breeding big data platform[J].Journal of agricultural big data,2023,5(3):93-103 (in Chinese with English abstract).
    [8] DAI C H,HUANG S J,ZHOU Y Y,et al.Concentrations and emissions of particulate matter and ammonia from extensive livestock farm in South China[J].Environmental science and pollution research international,2019,26(2):1871-1879.
    [9] 柴捷,张廷焕,王金勇,等.湿热环境对生长育肥猪生长性能的影响[J].家畜生态学报,2022,43(3):25-29.CHAI J,ZHANG T H,WANG J Y,et al.Effect of hot-humid environment on growth performance of growing pigs[J].Journal of domestic animal ecology,2022,43(3):25-29 (in Chinese with English abstract).
    [10] 覃日锐.猪常见有毒气体中毒的分析、诊断和防控方案[J].中国动物保健,2023,25(2):85-86.QIN R R.Analysis,diagnosis and prevention and control scheme of common toxic gas poisoning in pigs[J].China animal health,2023,25(2):85-86 (in Chinese).
    [11] 高航,袁雄坤,姜丽丽,等.猪舍环境参数研究综述[J].中国农业科学,2018,51(16):3226-3236.GAO H,YUAN X K,JIANG L L,et al.Review of environmental parameters in pig house[J].Scientia agricultura sinica,2018,51(16):3226-3236 (in Chinese with English abstract).
    [12] 林挺,朱增勇.2022年中国生猪产业和市场形势分析及展望[J].中国畜禽种业,2023,19(4):46-50.LIN T,ZHU Z Y.Analysis and prospect of China pig industry and market situation in 2022[J].The Chinese livestock and poultry breeding,2023,19(4):46-50(in Chinese).
    [13] 王玉攀,曹沛,钱阵山,等.自由进出式妊娠母猪精准饲喂技术与装备研究[J].今日养猪业,2022(1):104-107.WANG Y P,CAO P,QIAN Z S,et al.Study on precision feeding technology and equipment of free entry and exit pregnant sows[J].Pigs today,2022(1):104-107 (in Chinese).
    [14] GUO J J,KONG Y Y,LIN L J,et al.Lightweight network based on fourth order Runge-Kutta scheme and hybrid attention module for pig face recogniton[J/OL].Computers and electronics in agriculture,2024,223:109099[2023-10-28].https://doi.org/10.1016/j.compag.2024.109099.
    [15] 郭建军,韩钤钰,董佳琦,等.基于SSA-PSO-LSTM模型的羊舍相对湿度预测技术[J].农业机械学报,2022,53(9):365-373.GUO J J,HAN Q Y,DONG J Q,et al.Prediction of sheep house humidity based on SSA-PSO-LSTM model[J].Transactions of the CSAM,2022,53(9):365-373(in Chinese with English abstract).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭建军,孔壹右,刘双印,刘同来,曹亮,刘岳.数字化无人生猪养殖系统建设及应用[J].华中农业大学学报,2024,43(5):288-296

复制
分享
文章指标
  • 点击次数:90
  • 下载次数: 440
  • HTML阅读次数: 21
  • 引用次数: 0
历史
  • 收稿日期:2023-10-28
  • 在线发布日期: 2024-10-08
文章二维码