基于改进YOLOv5对果园环境中李的识别
CSTR:
作者:
作者单位:

1.四川农业大学信息工程学院,雅安 625014;2.雅安市数字农业工程技术研究中心,雅安 625014

作者简介:

贺英豪,E-mail:heyinghao@sicau.edu.cn

通讯作者:

倪铭,E-mail:nm@sicau.edu.cn

中图分类号:

TP391.4

基金项目:

四川省自然科学基金项目(2022NSFSC0172);四川农业大学专业建设支持计划(040-2121997775)


Recognizing plums in orchard environment based on improved YOLOv5
Author:
Affiliation:

1.College of Information Engineering Sichuan Agricultural University, Ya’an 625014, China;2.Ya’an Digital Agricultural Engineering Technology Research Center, Ya’an 625014, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为提高果园中高遮挡和密集的李(Prunus salicina Lindl.)的检测精度,提出一种改进YOLOv5s模型,在促进模型轻量化的同时提高模型对李的检测精度。首先,使用新的结构Focus-Maxpool模块替换主干网络中的下采样卷积,使改进模型在下采样时能够保留更多高遮挡目标和小目标的特征信息。其次,使用focal loss和交叉熵函数的加权损失作为改进模型的分类损失,提升改进模型对粘连目标的识别能力。最后,设计若干组检测试验来评价改进模型的性能。结果显示,改进YOLOv5s模型的平均精度优于YOLOv5s、YOLOv4、Faster-RCNN、SSD和Centernet;与YOLOv5s模型的检测结果相比,改进YOLOv5s模型的平均精度、召回率和精度分别提高2.84、9.53和1.66百分点,检测速度可达到91.37帧/s,能够满足实时检测需求。研究结果表明,改进的YOLOv5s模型在真实果园环境下具有较高的检测精度和鲁棒性。

    Abstract:

    This article proposed an improved YOLOv5s model to improve the accuracy of detecting plums (Prunus salicina Lindl.) with high occlusion and density in orchards and the lightweight. Firstly, a new Focus-Maxpool module was used to replace the down-sampling convolution in the backbone network, enabling the model to retain more feature information of small and highly occluded targets during down-sampling. Secondly, the weighted loss of focal loss and cross-entropy function was used as the classification loss of the model to improve its recognition ability for adhesive targets. Finally, several sets of detection experiments were designed to evaluate the performance of the model. The results showed that the average accuracy of the improved YOLOv5s model was better than that of YOLOv5s,YOLOv4,Faster RCNN,SSD,and Centernet. Compared with the detection results of the YOLOv5s model, the average accuracy, recall rate, and accuracy of the improved model increased by 2.84,9.53,and 1.66 percentages, respectively. The detection speed of the improved model reached 91.37 frames per second, meeting the requirements of real-time detection. It is indicated that the model improved has higher accuracy of detection and robustness in real orchard environments. It will provide data reference for studying fruit-picking robots and monitoring orchard environments.

    表 2 不同密度情况下的检测结果Table 2 Test results at different densities
    表 3 消融试验结果Table 3 Result of ablation test
    图1 图片标注示例Fig.1 Example of image annotation
    图2 Focus模块Fig.2 Focus module
    图3 Focus-Maxpool模块Fig.3 Focus-Maxpool module
    图4 YOLOv5s改进前后的主干网络结构Fig.4 Backbone network structure before and after YOLOv5s improvements
    图5 改进YOLOv5s网络结构Fig.5 Improved YOLOv5s network architecture
    图6 YOLOv5s改进前后的检测结果Fig.6 Detection results before and after the improvement of YOLOv5s
    图7 YOLOv5s改进前后的损失曲线Fig.7 Loss curve before and after YOLOv5s improvements
    图8 YOLOv5s模型改进前后对不同密度李的检测结果Fig.8 Detection results of different densities of plums before and after improvement of YOLOv5s model
    图9 不同模型对不同大小目标的检测结果Fig.9 Detection results of different models for targets of different sizes
    表 4 改进YOLOv5s与其他模型的性能对比试验结果Table 4 Experimental results comparing performance of improved YOLOv5s with other models
    表 1 YOLOv5s模型改进前后的结果对比Table 1 Comparison of results before and after improvement of the YOLOv5s model
    参考文献
    相似文献
    引证文献
引用本文

贺英豪,唐德钊,倪铭,蔡起起.基于改进YOLOv5对果园环境中李的识别[J].华中农业大学学报,2024,43(5):31-40

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-25
  • 在线发布日期: 2024-10-08
文章二维码