基于多传感器信息融合的菠萝果茎切割点位置检测方法
CSTR:
作者:
作者单位:

华南农业大学工程学院,广州 510642

作者简介:

焦锐,E-mail:m17728694578@163.com

通讯作者:

马瑞峻,E-mail:maruijun_mrj@163.com

中图分类号:

TP29

基金项目:

广东省科技计划项目(2021B1212040009)


A method for detecting cutting points in fruit stem of pineapple based on fusion of multi-sensor information
Author:
Affiliation:

College of Engineering, South China Agricultural University, Guangzhou 510642, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    夹切一体的菠萝(Ananas comosus (L.) Merr.)采摘器在进行田间采摘作业时,需要自主确定果茎切割点位置,而菠萝果茎处容易被植株叶片和苞叶遮挡,采用单一图像处理的方法难以准确识别到果茎切割点位置,为此提出一种多传感器信息融合的菠萝果茎切割点位置检测方法。将深度相机和多组光电传感器结合,利用改进的YOLOv5目标检测算法融合RGB-D深度信息,实现对菠萝冠芽顶部至果实底部长度测量,再利用光电传感器信号变化判断菠萝采摘器是否到达冠芽顶部位置,并将冠芽顶部作为起始位置,控制采摘器下降速度和时间,从而保证采摘器底部安装的切割刀准确抵达果茎切割点位置。台架试验结果表明,该方法对真实菠萝果茎切割点检测成功率达到85%,满足菠萝采摘机器人作业过程中果茎切割点检测准确性要求。

    Abstract:

    The pineapple (Ananas comosus (L. Merr.) picker with integrated clip needs to independently determine the cutting points in fruit stem of pineapple when picking in the field. Pineapple stems are easily obstructed by plant leaves and bracts, making it difficult to accurately identify the cutting points in fruit stem with a single method of image processing. A method for detecting the cutting points in fruit stem of pineapple based on the fusion of multi-sensor information was proposed. The length from the top of the pineapple crown bud to the bottom of the fruit was measured by combining a depth camera with multiple sets of photoelectric sensors and utilizing an improved YOLOv5 object detection algorithm to fuse RGB-D depth information. The changes in signal of photoelectric sensor were used to determine whether the pineapple picker has reached the top position of the crown bud. The top of the crown bud was used as the starting position to control the descent speed and time of the picker to ensure that the cutting blade installed at the bottom of the picker accurately reaches the cutting point of the fruit stem. The results of bench test showed that this method had a success rate of 85% in detecting the cutting points in real fruit stem of pineapple, meeting the accuracy requirements of detecting the cutting points in fruit stem of pineapple during the operation of pineapple picking robots. It will be of great significance for realizing the intelligent pineapple picking, and will lay a foundation for the subsequent development of pineapple picking robots in the field.

    表 1 模型的训练结果Table 1 The training results of the model
    图1 菠萝植株结构Fig.1 Plant structure of pineapple
    图2 果茎切割点检测示意图Fig.2 Schematic diagram of cutting point detection
    图3 菠萝采摘器结构图Fig.3 Structure of pineapple picker
    图4 红外对射式光电传感器Fig.4 Infrared reflector photoelectric sensor
    图5 基于机器视觉的菠萝冠芽及果实长度测量流程Fig.5 Measurement process of pineapple crown bud and fruit length based on machine vision
    图6 长边定义法Fig.6 Long side definition
    图7 环形平滑标签示意图Fig.7 Schematic diagram of the ring smooth label
    图8 CBAM整体结构图Fig.8 Overall structure of CBAM
    图9 长度测量原理Fig.9 Schematic diagram of length measurement
    图10 采摘器下降过程示意图Fig.10 Schematic diagram of picking process
    图11 理想状态下3组传感器电平信号变化示意图Fig.11 Schematic diagram of level signal change of three groups of sensors under ideal condition
    图12 菠萝冠芽及果实长度自动测量计算值与人工测量值相关性Fig.12 Correlation analysis between the calculated values of automatic measurement and manual measurement of pineapple crown bud and fruit length
    图13 信号采集装置Fig.13 Field data acquisition
    图14 菠萝的生长状态Fig.14 The growing state of the pineapple
    图15 电平信号分析Fig.15 Level signal analysis
    图16 果茎切割点定位试验Fig.16 Location test of cutting point of fruit stem
    参考文献
    [1] 马兴灶,连海山,弓满锋,等.菠萝采摘机械手结构设计与试验[J].山东农业大学学报(自然科学版),2020,51(4):727-732.MA X Z,LIAN H S,GONG M F,et al.Structural design and experiment of pineapple picking manipulator[J].Journal of Shandong Agricultural University(natural science edition),2020,51(4):727-732(in Chinese with English abstract).
    [2] 陈敏忠,郑爽,邓干然,等.湛江市菠萝田间生产机械化需求分析与展望[J].现代农业装备,2021,42(2):18-21.CHEN M Z,ZHENG S,DENG G R,et al.Analysis and prospect of pineapple mechanized production in Zhanjiang[J].Modern agricultural equipment,2021,42(2):18-21(in Chinese with English abstract).
    [3] 薛忠,陈如约,张秀梅.菠萝机械化种植与收获研究现状[J].山西农业大学学报(自然科学版),2021,41(3):110-120.XUE Z,CHEN R Y,ZHANG X M.Frontier of pineapple planting and harvesting mechanization in the world[J].Journal of Shanxi Agricultural University(natural science edition),2021,41(3):110-120(in Chinese with English abstract).
    [4] 周巧鸥,唐华,龙天畅,等.双排并联式菠萝收割机的设计[J].机械工程师,2019(5):49-50.ZHOU Q O,TANG H,LONG T C,et al.Design of double row parallel pineapple harvester[J].Mechanical engineer,2019(5):49-50(in Chinese with English abstract).
    [5] 刘天湖,刘伟,曾霆俊,等.多柔性指滚筒菠萝采收机构工作原理及设计[J].农业工程学报,2022,38(8):21-26.LIU T H,LIU W,ZENG T J,et al.Working principle and design of the multi-flexible fingered roller pineapple harvesting mechanism[J].Transactions of the CSAE,2022,38(8):21-26(in Chinese with English abstract).
    [6] 马创立.菠萝采摘机器人末端执行器设计与试验研究[D].广州:华南农业大学,2022.MA C L. Design and experimental study of end-effector of pineapple picking robot[D].Guangzhou:South China Agricultural University,2022(in Chinese with English abstract).
    [7] 宁政通,罗陆锋,廖嘉欣,等.基于深度学习的葡萄果梗识别与最优采摘定位[J].农业工程学报,2021,37(9):222-229.NING Z T,LUO L F,LIAO J X,et al.Recognition and the optimal picking point location of grape stems based on deep learning[J].Transactions of the CSAE,2021,37(9):222-229(in Chinese with English abstract).
    [8] LUO L,TANG Y,LU Q,et al.A vision methodology for harvesting robot to detect cutting points[J].Computers in industry,2018,99:130-139.
    [9] SUN Q X,CHAI X J,ZENG Z K,et al.Multi-level feature fusion for fruit bearing branch keypoint detection[J/OL].Computers and electronics in agriculture,2021,191:106479[2023-08-09].https://doi.org/10.1016/j.compag.2021.106479.
    [10] CHEN M Y,TANG Y C,ZOU X J,et al.Three-dimensional perception of orchard banana central stock enhanced by adaptive multi-vision technology[J/OL].Computers and electronics in agriculture,2020,174:105508[2023-08-09].https://doi.org/10.1016/j.compag.2020.105508.
    [11] 熊俊涛,邹湘军,彭红星,等.扰动柑橘采摘的实时识别与采摘点确定技术[J].农业机械学报,2014,45(8):38-43.XIONG J T,ZOU X J,PENG H X,et al.Real-time identification and picking point localization of disturbance Citrus picking[J].Transactions of the CSAM,2014,45(8):38-43(in Chinese with English abstract).
    [12] XIONG J T,LIU Z,LIN R,et al.Green grape detection and picking-point calculation in a night-time natural environment using a charge-coupled device (CCD) vision sensor with artificial illumination[J/OL].Sensors,2018,18(4):969[2023-08-09]. https://doi.org/10.3390/s18040969.
    [13] 罗陆锋,邹湘军,熊俊涛,等.自然环境下葡萄采摘机器人采摘点的自动定位[J].农业工程学报,2015,31(2):14-21.LUO L F,ZOU X J,XIONG J T,et al.Automatic positioning for picking point of grape picking robot in natural environment[J].Transactions of the CSAE,2015,31(2):14-21(in Chinese with English abstract).
    [14] 张勤,陈建敏,李彬,等.基于RGB-D信息融合和目标检测的番茄串采摘点识别定位方法[J].农业工程学报,2021,37(18):143-152.ZHANG Q,CHEN J M,LI B,et al.Method for recognizing and locating tomato cluster picking points based on RGB-D information fusion and target detection[J].Transactions of the CSAE,2021,37(18):143-152(in Chinese with English abstract).
    [15] 戴宁.基于图像处理的柚子采摘点识别方法研究[D].武汉:华中农业大学,2020.DAI N.Research on recognition method of grapefruit picking point based on image processing[D].Wuhan:Huazhong Agricultural University,2020(in Chinese with English abstract).
    [16] BAI Y H,MAO S H,ZHOU J,et al.Clustered tomato detection and picking point location using machine learning-aided image analysis for automatic robotic harvesting[J].Precision agriculture,2023,24(2):727-743.
    [17] 张真维,赵鹏,韩金城.基于双目视觉的树木高度测量方法研究[J].林业工程学报,2021,6(6):156-164.ZHANG Z W,ZHAO P,HAN J C.Research on measurement method of single tree height using binocular vision[J].Journal of forestry engineering,2021,6(6):156-164(in Chinese with English abstract).
    [18] 宋磊,李嵘,焦义涛,等.基于ResNeXt单目深度估计的幼苗植株高度测量方法[J].农业工程学报,2022,38(3):155-163.SONG L,LI R,JIAO Y T,et al.Method for measuring seedling height based on ResNeXt monocular depth estimation[J].Transactions of the CSAE,2022,38(3):155-163(in Chinese with English abstract).
    [19] 岳琳茜,李文宽,杨晓峰,等.基于改进YOLOv4的苹果检测与果径估测方法[J].激光杂志,2022,43(2):58-65.YUE L X,LI W K,YANG X F,et al.Apple detection and fruit diameter estimation method based on improved YOLOv4[J].Laser journal,2022,43(2):58-65(in Chinese with English abstract).
    [20] 卢伟,邹明萱,施浩楠,等.基于YOLOv5-TL的褐菇采摘视觉识别-测量-定位技术[J].农业机械学报,2022,53(11):341-348.LU W,ZOU M X,SHI H N,et al.Technology of visual identification-measuring-location for brown mushroom picking based on YOLOv5-TL[J].Transactions of the CSAM,2022,53(11):341-348(in Chinese with English abstract).
    [21] 宋怀波,焦义涛,华志新,等.基于YOLOv5-OBB与CT的浸种玉米胚乳裂纹检测[J].农业机械学报,2023,54(3):394-401.SONG H B,JIAO Y T,HUA Z X,et al.Endosperm crack detection method for seed dipping maize based on YOLOv5-OBB and CT technology[J].Transactions of the CSAM,2023,54(3):394-401(in Chinese with English abstract).
    [22] 徐佰祺.基于YOLO模型的遥感影像飞机目标检测技术研究[D].郑州:战略支援部队信息工程大学,2022.XU B Q. Research on aircraft target detectiom in remote sensing image based on YOLO model[D].Zhengzhou:Information Engineering University,2022(in Chinese with English abstract).
    [23] 孙顺远,陈浩.基于旋转目标检测的指针式仪表示数识别方法[J].仪表技术与传感器,2023(3):18-23.SUN S Y,CHEN H.Reading recognition method of pointer-type meters based on rotating object detection[J].Instrument technique and sensor,2023(3):18-23(in Chinese with English abstract).
    [24] 吴刚,吴云帆,陈度,等.基于机器视觉的玉米果穗性状参数测量方法研究[J].农业机械学报,2020,51(S2):357-365.WU G,WU Y F,CHEN D,et al.Research on measurement method of corn ear trait parameters based on machine vision[J].Transactions of the CSAM,2020,51(S2):357-365(in Chinese with English abstract).
    [25] 黄彤镔,黄河清,李震,等.基于YOLOv5改进模型的柑橘果实识别方法[J].华中农业大学学报,2022,41(4):170-177.HUANG T B,HUANG H Q,LI Z,et al.Citrus fruit recognition method based on the improved model of YOLOv5[J].Journal of Huazhong Agricultural University,2022,41(4):170-177(in Chinese with English abstract).
    [26] ZHANG Z Y.A flexible new technique for camera calibration[J].IEEE transactions on pattern analysis and machine intelligence,2000,22(11):1330-1334.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

焦锐,马瑞峻,陈瑜,伍恩慧,杨金鹏,温国政,潘雄.基于多传感器信息融合的菠萝果茎切割点位置检测方法[J].华中农业大学学报,2024,43(5):21-30

复制
分享
文章指标
  • 点击次数:94
  • 下载次数: 657
  • HTML阅读次数: 24
  • 引用次数: 0
历史
  • 收稿日期:2023-08-09
  • 在线发布日期: 2024-10-08
文章二维码