低温空气氧化生物炭吸附苯系污染物的作用机制
CSTR:
作者:
作者单位:

华中农业大学工学院/农业农村部智慧养殖技术重点实验室,武汉430070

作者简介:

马家敏,E-mail:2020307110022@webmail.hzau.edu.cn

通讯作者:

曹红亮,E-mail:hongliangcao@mail.hzau.edu.cn

中图分类号:

S216.2;O64

基金项目:

国家自然科学基金项目(31971807);国家重点研发计划政府间国际科技创新合作重点专项(2018YFE0183600)


Adsorption mechanism of low-temperature air oxidation biochar for benzene pollutants
Author:
Affiliation:

College of Engineering/Key Laboratory of Smart Farming for Agricultural,Huazhong Agricultural University, Wuhan 430070, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为进一步明晰低温空气氧化生物炭吸附苯系污染物的作用机制,以竹屑为原料、CaCl2为活化剂,通过两步活化法制备低温空气氧化生物炭,并综合吸附试验、炭结构表征和密度泛函理论(density functional theory, DFT)计算,解析低温空气氧化生物炭吸附苯酚、苯胺、对苯二酚、对硝基苯酚等4种苯系污染物的过程与行为。结果表明:低温空气氧化生物炭对苯系污染物的吸附性能受生物炭孔隙结构和表面官能团的协同作用影响,生物炭通过微孔结构的孔隙填充作用在空间几何尺度调控苯系污染物的吸附存储过程。低温空气氧化生物炭后,氧原子以羟基、醛基和羧基的形式赋存于生物炭碳骨架表面,从电子尺度影响碳骨架的电子结构排布、改变碳骨架与苯系污染物间的吸附位置及作用类型,通过静电引力及氢键等作用,显著增强生物炭对苯系污染物的吸附能力,其中,羟基和羧基的氢原子作为氢键的供体,醛基的氧原子作为氢键的受体。

    Abstract:

    Biochar is an efficient adsorption carrier for benzene pollutants, but the adsorption capacity of directly carbonized biochar for benzene pollutants is limited. Low-temperature air oxidation is effective in modifying the structure of biochar and enhancing its adsorption capacity of benzene pollutants. However, the adsorption behavior and mechanism of low-temperature air oxidation biochar for benzene pollutants still needs to be further clarified. Herein, low-temperature air oxidation biochar was prepared by a two-step activation method using bamboo chips as raw material and CaCl2 as activator. The adsorption processes and behaviors of low-temperature air oxidation biochar for four benzene pollutants including phenol, aniline, hydroquinone, and p-nitrophenol were deeply analyzed with comprehensive adsorption experiments, biochar structure characterization, and density flooding theory(DFT) calculations. The adsorption properties and mechanisms of oxygen-modified biochar for benzene pollutants were studied. The results showed that the adsorption performance of low-temperature air oxidation biochar for benzene pollutants was influenced by the synergistic effect of the pore structure and surface functional groups of biochar. Biochar regulated the adsorption and storage process of benzene pollutants at a spatial geometric scale through the pore filling effect of microporous structure. Oxygen atoms were assigned to the surface of the carbon skeleton of biochar in the form of hydroxyl, aldehyde and carboxyl groups after the oxidation of biochar by low temperature air. The electronic structure of the carbon skeleton was influenced by the electronic scale, modifying the adsorption position and type of interaction between the carbon skeleton and benzene pollutants. The adsorption capacities of biochar for benzene pollutants were significantly enhanced through mechanisms such as electrostatic attraction and hydrogen bonding. Among them, the hydrogen atoms of the hydroxyl and carboxyl groups in the carbon skeleton are easy to become donors of hydrogen bonds, while the oxygen atoms of the aldehyde group are easy to become acceptors of hydrogen bonds.

    表 1 未改性及氧改性生物炭孔隙结构参数Table 1 Pore structure parameters of zero-modified and oxygen-modified biochar
    图1 氧改性生物炭的苯系污染物单位吸附量Fig.1 Unit adsorption capacity of benzenes by oxygen-modified biochar
    图2 氧掺杂生物炭的苯系污染物吸附量提升率Fig.2 Enhancement rate of benzene adsorption by oxygen modified biochar
    图3 未改性及氧改性生物炭的拉曼能谱图(A)和XRD 谱图(B)Fig.3 Raman energy spectrum (A) and XRD spectrum (B) of zero-modified and oxygen-modified biochar
    图4 未改性及氧改性生物炭红外光谱图Fig.4 Infrared spectrum of zero-modified and oxygen-modified biochar
    图5 氧改性生物炭XPS谱图和氧改性生物炭表面碳和氧官能团形态分布图Fig.5 XPS spectra of oxygen-modified biochar and morphology distribution of oxygen and carbon functional groups on the surface of oxygen modified biochar
    图6 生物炭骨架模型图(A)和静电势分布图(B,C)Fig.6 Skeleton model diagram(A) and electrostatic potential distribution diagram(B,C)
    图7 原始碳骨架(A)和不同基团掺杂碳骨架(B-D)与不同苯系污染物稳定吸附构型Fig.7 Stable adsorption configuration of the original carbon skeleton(A) and different benzene pollutants(B-D)
    图8 原始碳骨架(A)与苯系污染物吸附体系(B-D)的IGMH分析Fig.8 IGMH analysis results of the original carbon(A) skeleton and benzene pollutant adsorption system(B-D)
    图9 氧改性生物炭的SBET(A)、RVmic(B)与苯系污染物吸附量关系Fig.9 Dependence of SBET(A) and RVmic(B) of oxygen-modified biochar on the unit adsorption amount of benzene
    图10 氧改性生物炭的C1s谱分峰结果中含氧官能团与苯系污染物的单位吸附量的关系Fig.10 Dependence of the percentage of oxygen containing functional groups in the C1s spectral fractionation
    参考文献
    相似文献
    引证文献
引用本文

马家敏,王卓超,杨争鸣,牛文娟,曹红亮.低温空气氧化生物炭吸附苯系污染物的作用机制[J].华中农业大学学报,2024,43(3):282-292

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-11
  • 在线发布日期: 2024-06-06
文章二维码