矮牵牛PhSPL9b基因的克隆及功能分析
CSTR:
作者:
作者单位:

1.湖北生态工程职业技术学院,武汉 430070;2.华中农业大学园艺林学学院,武汉 430070;3.广州市林业和园林科学研究院,广州 510405

作者简介:

周琴, E-mail:1648516802@qq.com

通讯作者:

刘国锋, E-mail: gzifla_lgf@gz.gov.cn

中图分类号:

S681.9

基金项目:

国家自然科学基金项目(31772345);广东省自然科学基金项目(2019A1515011840)


Cloning and functional analysis of PhSPL9b gene in petunia
Author:
Affiliation:

1.Hubei Ecology Polytechnic College, Wuhan 430070,China;2.College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;3.Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究SPL(SQUAMOSA-promoter binding protein-like)转录因子在矮牵牛成花转换中的作用,克隆矮牵牛PhSPL9b基因,并将该基因对应的miR156/157靶位点进行点突变获得rPhSPL9b,将PhSPL9brPhSPL9b分别构建超量表达载体,转化矮牵牛和拟南芥,最终获得拟南芥35S∶∶PhSPL9b35S∶∶rPhSPL9b转基因植株以及矮牵牛35S∶∶PhSPL9b转基因植株。研究结果显示,过表达PhSPL9brPhSPL9b导致拟南芥莲座叶显著减少,花期明显提前,其中35S∶∶rPhSPL9b转基因表型更为明显;过表达PhSPL9b促进矮牵牛提前开花。RT-PCR和qRT-PCR分析结果显示,表型明显的转基因株系中,PhSPL9b基因表达量均显著高于对照。转录激活实验结果表明,PhSPL9b是一个具有转录激活活性的转录因子。以上结果表明,矮牵牛PhSPL9b基因对开花时间具有重要调控作用,其功能具有保守性,同时,它可能是通过转录激活下游基因的表达而影响植物开花。

    Abstract:

    The PhSPL9b gene was cloned to study the role of SPL (SQUAMOSA-promoter binding protein-like) transcription factor in the flowering transformation in petunia. Point mutation of the miR156/157 target site corresponding to the PhSPL9b gene was conducted to obtain rPhSPL9b. The overexpression vectors for 35S∶∶PhSPL9b and 35S∶∶rPhSPL9b were constructed and transformed into petunia and Arabidopsis. Transgenic plants of Arabidopsis overexpressing PhSPL9b or rPhSPL9b and transgenic plants of petunia overexpressing PhSPL9b were obtained. The results showed that overexpression PhSPL9b or rPhSPL9b, especially 35S∶∶rPhSPL9b, significantly reduced the number of rosettes and promoted flowering in Arabidopsis compared with the control (CK). The phenotype of transgenic Arabidopsis with 35S∶∶rPhSPL9b was more obvious. Overexpression of PhSPL9b significantly promoted flowering in petunia. The results of analyses with RT-PCR and qRT-PCR showed that the expression level of PhSPL9b in transgenic lines with obvious phenotypes was significantly higher than that in the control. The results of transcription activation showed that PhSPL9b was a transcription factor with the function of activating transcription. It is indicated that the PhSPL9b gene in petunia plays an important regulatory role in flowering time, and its function is conserved. At the same time, it may affect plant flowering by transcriptionally activating the expression of downstream genes.

    表 2 PhSPL9b和rPhSPL9b超量表达拟南芥表型分析Table 2 Phenotypes of the transgenic Arabidopsis plants overexpressing PhSPL9b and rPhSPL9b
    表 1 试验所用引物Table 1 The primers used in this study
    表 3 PhSPL9b超量表达矮牵牛表型分析Table 3 Phenotypes of the transgenic Petunia plants overexpressing PhSPL9b
    图1 PhSPL9b基因结构图Fig.1 Structure of PhSPL9b gene
    图2 PhSPL9b相关表达载体构建Fig.2 Construction of PhSPL9b expression vectors
    图3 PhSPL9b转基因植株阳性检测Fig.3 Positive detection of PhSPL9b transgenic plants
    图4 PhSPL9b超量表达拟南芥表型分析Fig.4 Phenotypes of the transgenic Arabidopsis plants overexpressing PhSPL9b
    图5 rPhSPL9b超量表达拟南芥表型分析Fig.5 Phenotypes of the transgenic Arabidopsis plants overexpressing rPhSPL9b
    图6 PhSPL9b超量表达矮牵牛表型分析Fig.6 Phenotypes of the transgenic petunia plants overexpressing PhSPL9b
    图7 PhSPL9b转录激活特性分析Fig.7 Analysis of transcriptional activation characteristics of PhSPL9b
    参考文献
    [1] 周琴,张思思,包满珠,等.高等植物成花诱导的分子机理研究进展[J].分子植物育种,2018,16(11):3681-3692. ZHOU Q,ZHANG S S,BAO M Z,et al.Advances on molecular mechanism of floral initiation in higher plants[J].Molecular plant breeding,2018,16(11):3681-3692 (in Chinese with English abstract).
    [2] 王云梦,宋贺云,刘娟,等. FT和TFL1基因调控植物开花的分子机理[J].植物生理学报,2022,58(1):77-90.WANG Y M,SONG H Y,LIU J,et al.Molecular mechanism of FT and TFL1 genes on regulation of plant flowering[J].Plant physiology journal,2022,58(1):77-90 (in Chinese with English abstract).
    [3] 张璐,吴菁华,姚馨婷,等.中国水仙NtTFL1-1和NtTFL1-2基因的克隆和表达[J].应用与环境生物学报,2020,26(2):264-271.ZHANG L,WU J H,YAO X T,et al.Cloning and expression of the NtTFL1-1 and NtTFL1-2 genes from Narcissus tazetta var.chinensis[J].Chinese journal of applied and environmental biology,2020,26(2):264-271 (in Chinese with English abstract).
    [4] YU N,NIU Q W,NG K H,et al.The role of miR156/SPLs modules in Arabidopsis lateral root development[J].The plant journal,2015,83(4):673-685.
    [5] WANG Z S,WANG Y,KOHALMI S E,et al.Squamosa promoter binding protein-like 2 controls floral organ development and plant fertility by activating asymmetric leaves 2 in Arabidopsis thaliana[J].Plant molecular biology,2016,92(6):661-674.
    [6] XU M L,HU T Q,ZHAO J F,et al.Developmental functions of mir156-regulated squamosa promoter binding protein-like (spl) genes in Arabidopsis thaliana[J/OL].PLoS genetics,2016,12(8):e1006263[2024-01-24].https://doi.org/10.1371/journal.pgen.1006263.
    [7] KONG D X,PAN X,JING Y F,et al.ZmSPL10/14/26 are required for epidermal hair cell fate specification on maize leaf[J].New phytologist,2021,230(4):1533-1549.
    [8] XIE Y R,LIU Y,MA M D,et al.Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching[J/OL].Nature communications,2020,11(1):1955[2024-01-24].https://doi.org/10.1038/s41467-020-15893-7.
    [9] YU N,CAI W J,WANG S C,et al.Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana[J].The plant cell,2010,22(7):2322-2335.
    [10] CUI L G,SHAN J X,SHI M,et al.The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants[J].The plant journal,2014,80(6):1108-1117.
    [11] ZHAO J L,SHI M,YU J,et al.SPL9 mediates freezing tolerance by directly regulating the expression of CBF2 in Arabidopsis thaliana[J/OL].BMC plant biology,2022,22(1):59[2024-01-24].https://doi.org/10.1186/s12870-022-03445-8.
    [12] YAN Y,WEI M X,LI Y,et al.MiR529a controls plant height,tiller number,panicle architecture and grain size by regulating SPL target genes in rice (Oryza sativa L.)[J/OL].Plant science,2021,302:110728[2024-01-24].https://doi.org/10.1016/j.plantsci.2020.110728.
    [13] SUN Z X,SU C,YUN J X,et al.Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b[J].Plant biotechnology journal,2019,17(1):50-62.
    [14] 周琴,鲁瑞,张书婷,等.一个矮牵牛花器官发育突变体aps的表型鉴定及遗传分析[J].园艺学报,2019,46(2):317-329.ZHOU Q,LU R,ZHANG S T,et al.Phenotype characterization and genetic analysis of a floral mutant aps in petunia[J].Acta horticulturae sinica,2019,46(2):317-329 (in Chinese with English abstract).
    [15] MOREL P,HEIJMANS K,ROZIER F,et al.Divergence of the floral A-function between an asterid and a rosid species[J].The plant cell,2017,29(7):1605-1621.
    [16] MOREL P,HEIJMANS K,AMENT K,et al.The floral C-lineage genes trigger nectary development in petunia and Arabidopsis[J].The plant cell,2018,30(9):2020-2037.
    [17] MOREL P,CHAMBRIER P,BOLTZ V,et al.Divergent functional diversification patterns in the SEP/AGL6/AP1 MADS-box transcription factor superclade[J].The plant cell,2019,31(12):3033-3056.
    [18] PRESTON J C,JORGENSEN S A,OROZCO R,et al.Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia[J].Planta,2016,243(2):429-440.
    [19] ZHOU Q,ZHANG S S,CHEN F,et al.Genome-wide identification and characterization of the SBP-box gene family in Petunia[J/OL].BMC genomics,2018,19(1):193[2024-01-24].https://doi.org/10.1186/s12864-018-4537-9.
    [20] ZHOU Q,SHI J W,LI Z N,et al.miR156/157 targets SPLs to regulate flowering transition,plant architecture and flower organ size in petunia[J].Plant & cell physiology,2021,62(5):839-857.
    [21] MALLONA I,LISCHEWSKI S,WEISS J,et al.Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida[J/OL].BMC plant biology,2010,10:4[2024-01-24].https://doi.org/10.1186/1471-2229-10-4.
    [22] BOMBARELY A,MOSER M,AMRAD A,et al.Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida[J/OL].Nature plants,2016,2(6):16074[2024-01-24].https://doi.org/10.1038/nplants.2016.74.
    [23] 刘晓芬,凌晓祺,向理理,等.温度和赤霉素对春兰开花的调控[J].浙江农业学报,2023,35(2):355-363.LIU X F,LING X Q,XIANG L L,et al.Effect of temperature and gibberellin on flowering regulation of Cymbidium goeringii[J].Acta agriculturae Zhejiangensis,2023,35(2):355-363 (in Chinese with English abstract).
    [24] SALINAS M,XING S P,H?HMANN S,et al.Genomic organization,phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato[J].Planta,2012,235(6):1171-1184.
    [25] 李姝璇.农杆菌介导的大豆遗传转化方法优化及KN1和GID1基因对大豆再生和遗传转化效率的影响[D].南京:南京农业大学,2018.LI S X.Optimization of agrobacterium-mediated genetic transformation of soybean and effects of KN1 and GID1 genes on soybean regeneration and genetic transformation efficiency[D].Nanjing:Nanjing Agricultural University,2018 (in Chinese with English abstract).
    [26] DAI X Y,WANG Y Y,YANG A,et al.OsMYB2P-1,an R2R3 MYB transcription factor,is involved in the regulation of phosphate-starvation responses and root architecture in rice[J].Plant physiology,2012,159(1):169-183.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周琴,史杰玮,包满珠,刘国锋.矮牵牛PhSPL9b基因的克隆及功能分析[J].华中农业大学学报,2024,43(3):240-248

复制
分享
文章指标
  • 点击次数:252
  • 下载次数: 921
  • HTML阅读次数: 78
  • 引用次数: 0
历史
  • 收稿日期:2024-01-24
  • 在线发布日期: 2024-06-06
文章二维码