柑橘果实成熟过程中氨基酸、维生素E和脂质的动态分析
CSTR:
作者:
作者单位:

1.湖北民族大学生物资源保护与利用湖北省重点实验室/湖北民族大学林学园艺学院,恩施 445000;2.华中农业大学园艺林学学院/果蔬园艺作物种质创新与利用全国重点实验室,武汉 430070

作者简介:

牟蛟琳,E-mail: moujiaolin@hbmzu.edu.cn

通讯作者:

邓秀新,E-mail: xxdeng@mail.hzau.edu.cn

中图分类号:

S666

基金项目:

国家现代农业柑橘产业技术体系(CARS-26)


Analyzing dynamics of amino acid, vitamin E and lipids during fruit ripening in Citrus
Author:
Affiliation:

1.Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University/ College of Forestry and Horticulture, Hubei Minzu University, Enshi 445000,China;2.National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops/ College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为评价柑橘的抗氧化能力,利用GC-MS、UPLC和LC-MS/MS分别检测了6个柑橘品种果实在成熟过程中三类代谢物的相对含量。结果显示,柑橘果实以积累丝氨酸、脯氨酸和天冬氨酸为主,苏氨酸在柑橘青果时期的积累尤为丰富,且青果时期本地早橘汁胞中9种氨基酸的总含量最高;对维生素E而言,α-生育酚是柑橘中的主要异构形式,在成熟期柑橘的有色层中积累丰富;同时,柑橘不积累δ-生育酚且γ-生育酚只在柑橘有色层中积累;共鉴定到的8大类176种脂质,在柑橘果实中呈现出明显的时空分布特征,且卵磷脂为柑橘的主要脂质形式。通过柑橘果实中三类物质含量间的相关性分析发现,部分氨基酸与脂质存在高度正相关。

    Abstract:

    Amino acids, vitamin E and lipids are three classes of metabolites with antioxidant activity. GC-MS, UPLC, and LC-MS/MS were used to detect the relative content of three types of metabolites in the fruits of six Citrus varieties during the ripening process to analyze the dynamic changes of amino acids, vitamin E, and lipids during the ripening process of citrus fruits and evaluate the antioxidant activity of citrus. The results showed that citrus fruits mainly accumulated serine, proline, and aspartic acid, while threonine was particularly abundant during the green fruit stage of citrus. The total content of nine amino acids in green pulp of C. chuana ‘Bendizao’ (BDZ) during the green fruit stage was the highest. For vitamin E, α- tocopherol is the main isomeric form in citrus, which accumulates abundantly in mature colored pericarp. Additionally, citrus fruits did not accumulate δ- tocopherol, and γ- tocopherol only accumulated in the colored pericarp of citrus. A total of 8 major categories (176 species) of lipids were identified and showed significant characteristics of spatiotemporal distribution in citrus fruits, with phosphatidylcholine being the main form of lipids in citrus. It was found that some amino acids are highly positively correlated with lipids through correlation analysis of the content of three types of metabolites in citrus fruits. It will have a guiding significance for the improvement of quality in citrus varieties.

    图1 6个柑橘品种青果和黄果的氨基酸积累特征Fig.1 The accumulation characteristic of amino acids of green fruit and yellow fruit of six Citrus varieties
    图2 八类脂质的总相对含量在柑橘果实发育过程中的热图和聚类分析Fig.2 The heat map and cluster analysis of the relative total content of eight types of lipids in developmental citrus
    图3 脂类物质的相对含量在柑橘果实发育过程中的主成分分析Fig.3 The PCA analysis on relative content of lipids in developmental citrus
    图4 三类代谢物相对含量在柑橘样品中的相关性分析Fig.4 Correlation analysis in the relative content of three types of metabolites in citrus samples
    表 1 维生素E在不同时期有色层和汁胞中的相对含量Table 1 Relative content of vitamin E in colored pericarp and pulp at different periods
    参考文献
    [1] ASAI T,MATSUKAWA T,KAJIYAMA S.Metabolomic analysis of primary metabolites in Citrus leaf during defense responses[J].Journal of bioscience and bioengineering,2017,123(3):376-381.
    [2] WU G A,TEROL J,IBANEZ V,et al.Genomics of the origin and evolution of Citrus[J].Nature,2018,554(7692):311-316.
    [3] WANG X,XU Y T,ZHANG S Q,et al.Genomic analyses of primitive,wild and cultivated Citrus varieties provide insights into asexual reproduction[J].Nature genetics,2017,49(5):765-772.
    [4] DE LUCA I,DI MARI C,MORTARA M,et al.Effectiveness of nutritional counselling to increase fruit and vegetable daily intake and make dietary changes long term habits:an observational study on the population afferent in the nutritional outpatient of the Food Hygiene and Nutrition Unit of Department of Prevention Local Health Authority n.5-Turin 2018[J].Nutrition,metabolism and cardiovascular diseases,2020,30(3):535-536.
    [5] 刘圣超,孙志栋,陈山乔.采后柑橘营养成分代谢组学研究进展[J].宁波农业科技,2019(4):18-22.LIU S C,SUN Z D,CHEN S Q.Advances in metabolomics of postharvest citrus nutrients[J].Ningbo agricultural science and technology,2019(4):18-22(in Chinese).
    [6] ZOU Z,XI W P,HU Y,et al.Antioxidant activity of Citrus fruits[J].Food chemistry,2016,196:885-896.
    [7] 程勇杰,陈小伟,张沙沙,等. 柘树植物酵素中氨基酸分析及抗氧化性能研究 [J]. 食品工业科技, 2018, 39(6):1-12. CHENG Y J, CHEN X W, ZHANG S S, et al. Analysis of amino acids and in vitro antioxidant activity of Cudrania tricuspidata Jiaosu [J]. Food industry science and technology, 2018, 39(6):1-12 (in Chinese with English abstract).
    [8] KUMAR V,SHARMA A,KAUR R,et al.Differential distribution of amino acids in plants[J].Amino acids,2017,49(5):821-869.
    [9] 李文云,罗怿,柏自琴,等.柠檬和宽皮柑橘果肉的氨基酸组成特征分析[J].贵州农业科学,2019,47(7):100-104.LI W Y,LUO Y,BAI Z Q,et al.Study on composition characteristics of amino acids in pulp of lemon and loose-skin mandarin[J].Guizhou agricultural sciences,2019,47(7):100-104 (in Chinese with English abstract).
    [10] PEIXOTO J A B,áLVAREZ-RIVERA G,ALVES R C,et al.Comprehensive phenolic and free amino acid analysis of rosemary infusions:influence on the antioxidant potential[J/OL].Antioxidants,2021,10(3):500[2022-10-26].https://doi.org/10.3390/antiox10030500.
    [11] GUIDEA A,Z?GREAN-TUZA C,MOT A C,et al.Comprehensive evaluation of radical scavenging,reducing power and chelating capacity of free proteinogenic amino acids using spectroscopic assays and multivariate exploratory techniques[J/OL].Spectrochimica acta part A:molecular and biomolecular spectroscopy,2020,233:118158[2022-10-26].https://doi.org/10.1016/j.saa.2020.118158.
    [12] 陈源,余亚白,钱爱萍,等.柑橘果实不同部位氨基酸的测定与分析[J].山地农业生物学报,2012,31(5):389-392.CHEN Y,YU Y B,QIAN A P,et al.Determination of amino acids in different parts of Citrus fruit[J].Journal of mountain agriculture and biology,2012,31(5):389-392 (in Chinese with English abstract).
    [13] CHANDER S, GUO Y Q, YANG X H, et al. Genetic dissection of tocopherol content and composition in maize grain using quantitative trait loci analysis and the candidate gene approach [J]. Molecular breeding, 2018, 22: 353-365.
    [14] KAMAL-ELDIN A,APPELQVIST L ?.The chemistry and antioxidant properties of tocopherols and tocotrienols[J].Lipids,1996,31(7):671-701.
    [15] SHALABY A.Antioxidant compounds,assays of determination and mode of action[J].African journal of pharmacy and pharmacology,2013,7(10):528-539.
    [16] MALIK A,EGGERSDORFER M,TRILOK-KUMAR G.Vitamin E status in healthy population in Asia:a review of current literature[J].International journal for vitamin and nutrition research,2021,91(3/4):356-369.
    [17] JORGE N,SILVA A C,ARANHA C P M.Antioxidant activity of oils extracted from orange (Citrus sinensis) seeds[J].Anais da academia brasileira de ciencias,2016,88(2):951-958.
    [18] 姚楠.植物脂质生物学进展[J].植物生理学报,2018,54(12):1747.YAO N.Advances in plant lipid biology[J].Plant physiology journal,2018,54(12):1747 (in Chinese).
    [19] SUH M C,HAHNE G,LIU J R,et al.Plant lipid biology and biotechnology[J].Plant cell reports,2015,34(4):517-518.
    [20] 宫璇,齐筱莹,赵志康,等.卵磷脂及复合物的功能活性研究进展[J].食品与发酵工业,2021,47(6):295-299.GONG X,QI X Y,ZHAO Z K,et al.Research progress on the functional activity of lecithin and lecithin complex[J].Food and fermentation industries,2021,47(6):295-299 (in Chinese with English abstract).
    [21] GüNEY M,OZ A T,KAFKAS E.Comparison of lipids,fatty acids and volatile compounds of various kumquat species using HS/GC/MS/FID techniques[J].Journal of the science of food and agriculture,2015,95(6):1268-1273.
    [22] WAN H L,LIU H B,ZHANG J Y,et al.Lipidomic and transcriptomic analysis reveals reallocation of carbon flux from cuticular wax into plastid membrane lipids in a glossy “Newhall” navel orange mutant[J/OL].Horticulture research,2020,7:41[2022-10-26].https://doi.org/10.1038/s41438-020-0262-z.
    [23] PRIOR R L,WU X L.Diet antioxidant capacity:relationships to oxidative stress and health[J].American journal of biomedical sciences,2013,5(2):126-139.
    [24] 宋鑫,谭丰全,张苗,等.‘纽荷尔’脐橙与‘尤力克’柠檬种间体细胞杂种的代谢特征分析[J].园艺学报,2019,46(1):37-46.SONG X,TAN F Q,ZHANG M,et al.Metabolic characteristics of interspecific allotetraploid somatic hybrid between ‘Newhall’ navel orange and ‘Eureka’ lemon[J].Acta horticulturae sinica,2019,46(1):37-46 (in Chinese with English abstract).
    [25] GARCIA I,RODGERS M,PEPIN R,et al.Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco[J].Plant physiology,1999,119(4):1507-1516.
    [26] MIRET J A,MUNNé-BOSCH S.Plant amino acid-derived vitamins:biosynthesis and function[J].Amino acids,2014,46(4):809-824.
    [27] 董昕颖.不同采收期尤力克柠檬果实营养品质及其抗氧化活性评价研究[D].重庆:西南大学,2019.DONG X Y.Evaluation of nutritional quality and antioxidant activity of eureka lemon[Citrus limon (L.) Burm.F.] fruit in different harvest stages[D].Chongqing:Southwest University,2019 (in Chinese with English abstract).
    [28] 宿明月.基于色谱质谱联用技术探究不同生长时期南丰蜜桔成分的变化及桔皮茶的工艺研究[D].南昌:南昌大学,2022.SU M Y.Studies on the change of different growth stages about the components of Nanfeng tangerine based on chromatography-mass spectrometry technology and the processing craft of orange peel tea[D].Nanchang:Nanchang University,2022 (in Chinese with English abstract).
    [29] 何莎莎.不同类型柑橘果实氨基酸组成分析及“三度”法营养价值评价[D].重庆:西南大学,2018.HE S S.The analysis of amino acid composition of different types of Citrus fruits and evaluation of nutritional value with “three degree”method[D].Chongqing:Southwest University,2018 (in Chinese with English abstract).
    [30] 张迪,谢鸿根,潘鹤立,等.不同品种柑橘果肉中氨基酸的测定与分析[J].亚热带植物科学,2018,47(4):322-326.ZHANG D,XIE H G,PAN H L,et al.Determination and analysis of amino acids in pulp of different Citrus cultivars[J].Subtropical plant science,2018,47(4):322-326 (in Chinese with English abstract).
    [31] 刘淑桢,韩静雯,云泽,等.国庆1号温州蜜柑果实成熟过程中极性代谢物的变化[J].中国农业科学,2012,45(21):4437-4446.LIU S Z,HAN J W,YUN Z,et al.Changes of polar metabolites in guoqing No.1 Satsuma mandarine during fruit ripening[J].Scientia agricultura sinica,2012,45(21):4437-4446 (in Chinese with English abstract).
    [32] SCHAUER N,ZAMIR D,FERNIE A R.Metabolic profiling of leaves and fruit of wild species tomato:a survey of the Solanum lycopersicum complex[J].Journal of experimental botany,2005,56(410):297-307.
    [33] FALK J,MUNNé-BOSCH S.Tocochromanol functions in plants:antioxidation and beyond[J].Journal of experimental botany,2010,61(6):1549-1566.
    [34] CHUN J, LEE J S, YE L, et al. Tocopherol and tocotrienol contents of raw and processed fruits and vegetables in the United States diet [J]. Journal of food composition and analysis, 2006, 19(2): 196-204.
    [35] CELA J,ARROM L,MUNNé-BOSCH S.Diurnal changes in photosystemⅡ photochemistry,photoprotective compounds and stress-related phytohormones in the CAM plant,Aptenia cordifolia[J].Plant science,2009,177(5):404-410.
    [36] WATKINS J L,LI M,MCQUINN R P,et al.A GDSL esterase/lipase catalyzes the esterification of lutein in bread wheat[J].The plant cell,2019,31(12):3092-3112.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

牟蛟琳,卢杨,张哲惠,叶俊丽,邓秀新.柑橘果实成熟过程中氨基酸、维生素E和脂质的动态分析[J].华中农业大学学报,2024,43(1):115-123

复制
分享
文章指标
  • 点击次数:461
  • 下载次数: 1693
  • HTML阅读次数: 257
  • 引用次数: 0
历史
  • 收稿日期:2022-10-26
  • 在线发布日期: 2024-01-30
文章二维码