番茄响应南方根结线虫侵染相关转录因子的初步分析
CSTR:
作者:
作者单位:

1.广西壮族自治区农业科学院植物保护研究所/农业农村部华南果蔬绿色防控重点实验室/ 广西作物病虫害生物学重点实验室,南宁530007;2.广西大学农学院,南宁530005

作者简介:

陆秀红,E-mail: 447597587@qq.com

通讯作者:

刘志明,E-mail: liu0172@126.com

中图分类号:

S436.412

基金项目:

广西自然科学基金项目(2020GXNSFAA297076);广西农业科学院科技发展基金项目(桂农科2021YT062);国家自然科学基金项目(31860492)


Preliminary analysis of transcription factors associated with tomato response to infection of Meloidogyne incognita
Author:
Affiliation:

1.Institute of Plant Protection, Guangxi Academy of Agricultural Sciences/ Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests,Nanning 530007, China;2.College of Agricultural, Guangxi University, Nanning 530005, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [24]
  • | | | |
  • 文章评论
    摘要:

    为明确番茄接种根结线虫后基因种类和表达量在转录水平的变化规律,利用RNA-seq对未接种及接种南方根结线虫2龄幼虫6、12、24和48 h的番茄进行转录组测序,探究番茄响应南方根结线虫侵染相关的关键转录因子,并采用qRT-PCR方法对测序结果进行验证。结果显示,接种南方根结线虫后6、12、24和48 h分别有350、390、580、1 154个基因差异表达,其中差异表达转录因子分别为11、11、19、50个。这些转录因子属于15个家族,其中数量最多的为MYB家族和bHLH家族(均为20个),其次是ERF家族19个、WRKY家族15个、bZIP家族9个。南方根结线虫侵染过程差异表达最明显的主要为ERF、WRKY、MYB和bHLH家族转录因子,其中Solyc03g005520Solyc02g094270Solyc09g066350显著上调,接种后48 h log2FC分别为 9.16、6.49和6.33;Solyc02g079280Solyc12g100140 Solyc04g072460显著下调,接种后48 h log2FC分别为-2.60、-1.72和-1.70。qRT-PCR验证结果显示,6个随机选取基因的表达趋势与测序结果基本一致。以上结果表明,ERF、WRKY、MYB和bHLH家族转录因子可能参与番茄与南方根结线虫互作,在番茄响应南方根结线虫侵染反应中发挥着重要的调控作用。

    Abstract:

    In order to explore the gene expression pattern at transcriptional level of tomato after inoculated with Meloidogyne incognita, transcriptome sequencing was performed on tomato root at 6 h, 12 h, 24 h and 48 h after inoculated with 2nd instar larvae of root-knot nematode. The key transcription factor related to the tomato response to the infection of M. incognita were analyzed and the sequencing results were verified by quantitative real-time PCR. The results showed that 350, 390, 580, 1 154 genes were differentially expressed at 6 h, 12 h, 24 h and 48 h after inoculation, and 11, 11, 19 and 50 transcription factors were differentially expressed, respectively. They belonged to 15 transcription factor families, of which MYB family and bHLH family are the most abundant with 20 genes, followed by ERF family with 19 genes, WRKY family with 15 genes, and bZIP family with 9 genes. Further studies showed that the transcription factors of ERF,WRKY,MYB and bHLH family were the most differentially expressed. Solyc03g005520Solyc02g094270 and Solyc09g066350 were significantly up regulated and the log2FC at 48 h after inoculation was 9.16, 6.49 and 6.33, respectively. Solyc03g005520Solyc02g094270 and Solyc09g066350 were significantly down regulated, and log2FC at 48 h after inoculation was -2.60,-1.72 and -1.70,respectively. The results of qRT-PCR analysis showed that the expression trend of six randomly selected genes was consistent with the sequencing results. The results of this study suggest that the transcription factors of ERF, WRKY and bHLH family may be involved in the interaction between tomato and M. incognita, and play an important regulatory role in tomato response to the infection of M. incognita.

    表 1 实时荧光定量PCR的引物Table 1 The primer of qPCR
    图1 样本间差异表达基因的数量及维恩图Fig.1 Number and Venn diagrams of differentially expressed genes between samples
    图2 差异表达基因的GO分析Fig.2 The GO annotations analysis of differentially expressed genes
    图3 差异表达基因的KEGG分析Fig.3 The KEGG annotations analysis of differentially expressed genes
    图4 差异表达的转录因子Fig.4 Differentially expressed transcription factors between samples
    图5 根结线虫感染后转录因子DEGs的热图Fig.5 Heatmap showing the DEGs of transcription factors after infection by RKNs
    图6 差异表达基因的qRT-PCR验证Fig.6 Verification of genes by qRT-PCR
    表 2 测序数据质量统计Table 2 Quality control of data
    参考文献
    [1] LI B,MENG X Z,SHAN L B,et al.Transcriptional regulation of pattern-triggered immunity in plants[J].Cell host & microbe,2016,19(5):641-650.
    [2] SEO E,CHOI D,CHOI C.Functional studies of transcription factors involved in plant defenses in the genomics era[J].Briefings in functional genomics,2015,14(4):260-267.
    [3] JONES J T,ANNELIES H,DANCHIN ETIENNE G J,et al.Top 10 plant-parasitic nematodes in molecular plant pathology[J].Molecular plant pathology,2013,14(9):946-961.
    [4] 彭德良.植物线虫病害:我国粮食安全面临的重大挑战[J].生物技术通报,2021,37(7):1-2.PENG D L.Plant nematode diseases:serious challenges to China's food security[J].Biotechnology bulletin,2021,37(7):1-2(in Chinese).
    [5] 王勋芳,何德琴,杨忠庆,等.番茄根结线虫病的发生特点与防治技术[J].云南农业科技,2020(3):38-39.WANG X F,HE D Q,YANG Z Q,et al.Occurrence characteristics and control techniques of tomato root-knot nematode disease [J].Yunnan agricultural science and technology,2020(3):38-39(in Chinese).
    [6] ERCOLANO M R,SANSEVERINO W,CARLI P,et al.Genetic and genomic approaches for R-gene mediated disease resistance in tomato:retrospects and prospects[J].Plant cell reports,2012,31(6):973-985.
    [7] ALI M A,AZEEM F,ABBAS A,et al.Transgenic strategies for enhancement of nematode resistance in plants[J/OL].Frontiers in plant science,2017,8:750[2022-12-08].https://doi.org/10.3389/fpls.2017.00750.
    [8] EL-SAPPAH A H,ISLAM M M,EL-AWADY H H,et al.Tomato natural resistance genes in controlling the root-knot nematode[J/OL].Genes,2019,10(11):925[2022-12-08].https:// doi.org/10.3390/genes10110925.
    [9] ZHANG M,ZHANG H Y,TAN J,et al.Transcriptome analysis of eggplant root in response to root-knot nematode infection[J/OL].Pathogens (Basel,Switzerland),2021,10(4):470[2022-12-08].https://doi.org/10.3390/pathogens10040470.
    [10] SHAHZAD R,JAMIL S,AHMAD S,et al.Harnessing the potential of plant transcription factors in developing climate resilient crops to improve global food security:current and future perspectives[J].Saudi journal of biological sciences,2021,28(4):2323-2341.
    [11] 陆秀红,张雨,秦舒婷,等.番茄NBS-LRR抗根结线虫基因同源序列的克隆与分析[J].华中农业大学学报,2019,38(1):67-72.LU X H,ZHANG Y,QIN S T,et al.Cloning and analysis of root knot nematode resistance gene of NBS-LRR analogs from tomato[J].Journal of Huazhong Agricultural University,2019,38(1):67-72(in Chinese with English abstract).
    [12] 唐科志,周常勇.红橘响应褐斑病菌侵染的转录组学分析[J].中国农业科学,2020,53(22):4584-4600.TANG K Z,ZHOU C Y.Transcriptome analysis of Citrus reticulata blanco,cv.hongjv infected with Alternaria alternata tangerine pathotype[J].Scientia agricultura sinica,2020,53(22):4584-4600(in Chinese with English abstract).
    [13] TOLOSA L N,ZHANG Z B.The role of major transcription factors in solanaceous food crops under different stress conditions:current and future perspectives[J/OL].Plants (Basel,Switzerland),2020,9(1):56[2022-12-08].https:// doi.org/10.3390/plants9010056.
    [14] KLAY I,GOUIA S,LIU M C,et al.Ethylene Response Factors (ERF) are differentially regulated by different abiotic stress types in tomato plants[J].Plant science,2018,274:137-145.
    [15] PAN X Q,FU D Q,ZHU B Z,et al.Overexpression of the ethylene response factor SlERF1 gene enhances resistance of tomato fruit to Rhizopus nigricans[J].Postharvest biology and technology,2013,75:28-36.
    [16] PAN I C,LI C W,SU R C,et al.Ectopic expression of an EAR motif deletion mutant of SlERF3 enhances tolerance to salt stress and Ralstonia solanacearum in tomato[J].Planta,2010,232(5):1075-1086.
    [17] LI Z J,TIAN Y S,XU J,et al.A tomato ERF transcription factor,SlERF84,confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv.tomato DC3000[J].Plant physiology and biochemistry,2018,132:683-695.
    [18] MOHANTA T K,PARK Y H,BAE H H.Novel genomic and evolutionary insight of WRKY transcription factors in plant lineage[J/OL].Scientific reports,2016,6:37309[2022-12-08].https://doi.org/10.1038/srep37309.
    [19] BHATTARAI K K,ATAMIAN H S,KALOSHIAN I,et al.WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1[J].The plant journal,2010,63(2):229-240.
    [20] ATAMIAN H S,EULGEM T,KALOSHIAN I.SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato[J].Planta,2012,235(2):299-309.
    [21] CHINNAPANDI B,BUCKI P,BRAUN MIYARA S.SlWRKY45,nematode-responsive tomato WRKY gene,enhances susceptibility to the root knot nematode, M. javanica infection[J/OL].Plant signaling & behavior,2017,12(12):e1356530[2022-12-08].https://doi.org/0.1080/15592324.2017.1356530.
    [22] AMBAWAT S,SHARMA P,YADAV N R,et al.MYB transcription factor genes as regulators for plant responses:an overview[J].Physiology and molecular biology of plants,2013,19(3):307-321.
    [23] LI Z J,PENG R H,TIAN Y S,et al.Genome-wide identification and analysis of the MYB transcription factor superfamily in Solanum lycopersicum[J].Plant & cell physiology,2016,57(8):1657-1677.
    [24] WANG J Y,HU Z Z,ZHAO T M,et al.Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum)[J/OL].BMC genomics,2015,16(1):39[2022-12-08].https://doi.org/10.1186/s12864-015-1249-2.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陆秀红,黄金玲,覃丽萍,刘峥嵘,刘志明.番茄响应南方根结线虫侵染相关转录因子的初步分析[J].华中农业大学学报,2024,43(1):62-69

复制
分享
文章指标
  • 点击次数:489
  • 下载次数: 911
  • HTML阅读次数: 121
  • 引用次数: 0
历史
  • 收稿日期:2022-12-08
  • 在线发布日期: 2024-01-30
文章二维码