生物源新型铁螯合剂研究进展及其应用
CSTR:
作者:
作者单位:

1.养分利用和管理国家重点实验室/中国农业大学资源环境学院/国家农业绿色发展研究院,北京100193;2.西南大学资源环境学院,重庆400715;3.云南云天化股份有限公司研发中心,昆明650228

作者简介:

崔冬明,E-mail:m15779090586@163.com

通讯作者:

左元梅,E-mail:zuoym@cau.edu.cn

中图分类号:

Q945.1

基金项目:

“十四五”国家重点研发计划项目(2023YFD1700203,2022YFD1901500/2022YFD1901501);国家自然科学基金项目(32372810);云天化科技人才与平台计划项目(202305AF150055)


Progress and application of novel iron biochelates
Author:
Affiliation:

1.State Key Laboratory of Nutrient Use and Management/College of Resources and Environmental Sciences, China Agricultural University/National Academy of Agriculture Green Development, Beijing 100193, China;2.College of Resources and Environment, Southwest University, Chongqing 400715, China;3.Yunnan ICL YTH Phosphate Research and Technology Co., Ltd., Kunming 650228, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [102]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    铁是所有生物正常发育所必需的微量元素之一,尤其是通过生物强化培育富含铁营养的农产品是解决人类铁营养“隐性饥饿”的重要技术途径,而螯合态铁肥由于见效快被广泛应用。因此,创制和研发新型微量元素螯合剂始终是国内外研究的竞争热点。麦根酸类植物铁载体和微生物铁载体等,能够高效螯合难溶铁并被植物高效吸收利用,是潜在的新型生物源螯合剂。该类新型铁肥在改善植物铁营养的同时不需要外源铁的投入,而是发挥菌株自身活性物质较强的螯合特性高效活化土壤中丰富的铁资源,为植物提供足够的生物有效铁。为进一步挖掘和研发新型生物源的绿色、高效且稳定的螯合剂,并为绿色智能肥料研发、实现绿色农业的可持续发展提供新途径和技术突破,本文基于近年来植物和微生物对铁营养吸收利用的分子生理机制的不断深入研究,从植物缺铁现状及诱因、改善铁营养的途径,到机理Ⅱ植物根系分泌物吸收利用铁的分子生态优势以及微生物铁载体改善植物铁营养的潜力,对生物源新型铁螯合剂研究进展及其应用进行了系统综述。期望通过进一步的研究和开发,能够更深入地了解这些新型生物源螯合剂的作用机制以提高植物的铁营养吸收效率,为实现绿色农业的可持续发展提供新的解决方案。

    Abstract:

    Iron is an essential micronutrient for the normal development of all living things. In particular, cultivating iron-rich seeds through biofortification is an important technical solution to solve the "hidden hunger" of human beings, and chelated iron fertilizer is widely used due to its high efficiency. Therefore, the research and development of novel micronutrient chelators is always a competitive hotspot in the world.The plant-secreted mugineic acids and microbial-secreted siderophores, which can efficiently activate insoluble iron to be bioavailable for plants, are potential novel biochelates, especially microorganisms that can efficiently secrete siderophores have application potential. These novel iron fertilizers can improve the iron nutrition of plants without external iron input, but can activate the rich iron resources in the soil effectively by utilizing the strong chelating property of the active substance of the strain itself, and provide enough bioavailable iron for plants. Therefore, these findings offer applied opportunities for novel biochelates to improve plant iron nutrition and crop yield and sustainable development of agriculture. To further explore and develop those novel and green biochelates, provide new pathways for the development of green intelligent fertilizer, and achieve the sustainable development of agriculture, based on the research progress of the molecular and physiological mechanism of iron uptake and utilization by plants and microorganisms, the research progress and application of novel iron biochelates from plants and microorganisms were reviewed. The study covers the status and causes plant iron deficiency, ways to improve iron nutrition, molecular ecological advantages of iron absorption and utilization by plant root exudates under mechanism Ⅱ, as well as the potential of microbial siderophores to improve plant iron nutrition. It is expected that further research and development will lead to a deeper understanding of the mechanism of these novel biochelates to improve the efficiency of iron nutrient uptake in plants, and provide new ways for realizing the sustainable development of green agriculture. It is expected that further research and development will lead to a deeper understanding of the mechanism of these novel biochelates to improve the efficiency of iron nutrient uptake in plants, and provide new ways for realizing the sustainable development of green agriculture.

    表 6 微生物铁载体作为生物源螯合剂开发绿色智能肥料的特点和优势Table 6 Characteristics and advantages of microbial siderophores as biochelators towards the development of green intelligent fertilizers
    表 2 不同铁肥的种类及其功能特性Table 2 Types and characteristics of different iron fertilizers
    图1 植物吸收铁的生理分子机制Fig.1 Physiological and molecular mechanisms of iron uptake in plants
    表 5 微生物铁载体与植物铁载体螯合铁的能力比较分析Table 5 Comparative analysis of the ability of microbial siderophores and phytosiderophores to chelate iron
    表 4 微生物铁载体对改善植物铁营养的效应及其机制分析Table 4 Analysis of the effects and mechanisms of microbial siderophores on improving plant iron nutrition
    表 3 PDMA对于改善作物铁营养及提高产量方面的潜力与优势Table 3 Potentials and advantages of PDMA for improvement of crop iron nutrition and yield
    表 1 不同铁肥处理对植物铁营养和产量的影响Table 1 Effects of different iron fertilizer treatments on plant iron nutrition and yield
    参考文献
    [1] ZHANG X X,ZHANG D,SUN W,et al.The adaptive mechanism of plants to iron deficiency via iron uptake,transport,and homeostasis[J/OL].International journal of molecular sciences,2019,20(10):2424[2023-11-10].https://doi.org/10.3390/ijms20102424.
    [2] GUERINOT M L,YI Y.Iron:nutritious,noxious,and not readily available[J].Plant physiology,1994,104(3):815-820.
    [3] 黄俊,张育维,汪洪.铁肥施用、生物强化与人体铁素营养[J].肥料与健康,2023,50(2):11-23.HUANG J,ZHANG Y W,WANG H.Iron fertilizer application,bio-fortification and human iron nutrition[J].Fertilizer & health,2023,50(2):11-23 (in Chinese with English abstract).
    [4] ZUO Y M,ZHANG F S.Effect of peanut mixed cropping with gramineous species on micronutrient concentrations and iron chlorosis of peanut plants grown in a calcareous soil[J].Plant and soil,2008,306(1):23-36.
    [5] FERREIRA C M H,SOUSA C A,SANCHIS-PéREZ I,et al.Calcareous soil interactions of the iron(III) chelates of DPH and Azotochelin and its application on amending iron chlorosis in soybean (Glycine max)[J].Science of the total environment,2019,647:1586-1593.
    [6] LURTHY T,PIVATO B,LEMANCEAU P,et al.Importance of the rhizosphere microbiota in iron biofortification of plants[J/OL].Frontiers in plant science,2021,12:744445[2023-11-10].https://doi.org/10.3389/fpls.2021.744445.
    [7] BAILEY R L,WEST K P,BLACK R E.The epidemiology of global micronutrient deficiencies[J].Annals of nutrition and metabolism,2015,66(Suppl. 2):22-33.
    [8] MCLEAN E,COGSWELL M,EGLI I,et al.Worldwide prevalence of anaemia,WHO vitamin and mineral nutrition information system,1993-2005[J].Public health nutrition,2009,12(4):444-454.
    [9] TRIPATHI D K,SINGH S,GAUR S,et al.Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance[J/OL].Frontiers in environmental science,2018,5:86[2023-11-10].https://doi.org/10.3389/fenvs.2017.00086.
    [10] SCHWERTMANN U.Solubility and dissolution of iron oxides[J].Plant and soil,1991,130(1):1-25.
    [11] SULLIVAN T S,GADD G M.Metal bioavailability and the soil microbiome[M]//SPARKS D L. Advances in agronomy.Amsterdam:Elsevier,2019:79-120.
    [12] 褚宏欣,党海燕,王涛,等.我国主要麦区土壤有效铁锰铜锌丰缺状况评价及影响因素[J/OL].土壤学报,2023:1-10[2023-11-10].http://kns.cnki.net/kcms/detail/32.1119.P.20230324.1008.002.html.CHU H X,DANG H Y,WANG T,et al.Evaluations and influencing factors of soil available Fe,Mn,Cu and Zn concentrations in major wheat production regions of China[J/OL].Acta pedologica sinica,2023:1-10[2023-11-10].http://kns.cnki.net/kcms/detail/32.1119.P.20230324.1008.002.html(in Chinese with English abstract).
    [13] WELCH R M,GRAHAM R D.Breeding for micronutrients in staple food crops from a human nutrition perspective[J].Journal of experimental botany,2004,55(396):353-364.
    [14] MURPHY K M,REEVES P G,JONES S S.Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars[J].Euphytica,2008,163(3):381-390.
    [15] PALCHOUDHURY S,JUNGJOHANN K L,WEERASENA L,et al.Enhanced legume root growth with pre-soaking in α-Fe2O3 nanoparticle fertilizer[J].RSC advances,2018,8(43):24075-24083.
    [16] LIU L,CONG W F,SUTER B,et al.How much can Zn or Fe fertilization contribute to Zn and Fe mass concentration in rice grain? A global meta-analysis[J/OL].Field crops research,2023,301:109033[2023-11-10].https://doi.org/10.1016/j.fcr.2023.109033.
    [17] ZHANG R Y,ZHANG W N,KANG Y C,et al.Application of different foliar iron fertilizers for improving the photosynthesis and tuber quality of potato (Solanum tuberosum L.) and enhancing iron biofortification[J].Chemical and biological technologies in agriculture,2022,9:1-14.
    [18] SUN Y,MI W H,WU L H.Effects of foliar Fe and Zn fertilizers on storage root Fe,Zn,and beta-carotene content of sweet potato (Ipomoea batatas L.)[J].Journal of plant nutrition,2019,42(1):16-26.
    [19] MILASHI L R,JAVID M G,ALAHDADI I,et al.Alleviation of salt stress and improvement of Fe accumulation in wheat grain,using slow-release fertilizer enriched with Fe[J].Journal of plant nutrition,2020,43(20):2990-3001.
    [20] 安珍,张茹艳,周春涛,等.铁肥对马铃薯生理特性、产量及品质的影响[J].江苏农业学报,2022,38(4):931-938.AN Z,ZHANG R Y,ZHOU C T,et al.Effects of iron fertilizer on physiological characteristics,yield and quality of potato[J].Jiangsu journal of agricultural sciences,2022,38(4):931-938 (in Chinese with English abstract).
    [21] 郭献平,郭鹏,王东升,等.Fe-EDDHA矫治梨缺铁黄化病应用效果研究[J].中国果树,2022(10):7-12.GUO X P,GUO P,WANG D S,et al.Study on the application effect of Fe-EDDHA in correcting iron deficiency chlorosis of pear[J].China fruits,2022(10):7-12 (in Chinese).
    [22] BABAEI K,SEYED SHARIFI R,PIRZAD A,et al.Effects of bio fertilizer and nano Zn-Fe oxide on physiological traits,antioxidant enzymes activity and yield of wheat (Triticum aestivum L.) under salinity stress[J].Journal of plant interactions,2017,12(1):381-389.
    [23] DOLA D B,MANNAN M A,SARKER U,et al.Nano-iron oxide accelerates growth,yield,and quality of Glycine max seed in water deficits[J/OL].Frontiers in plant science,2022,13:992535[2023-11-10].https://doi.org/10.3389/fpls.2022.992535.
    [24] 刘自飞,云鹏,王盛锋,等.木质素磺酸铁肥研制及其对花生的施用效果[J].中国农业科技导报,2016,18(3):126-133.LIU Z F,YUN P,WANG S F,et al.Preparing of iron lignosulfonate fertilizer and its effect on iron nutrition of peanut(Arachis hypogaea L.)[J].Journal of agricultural science and technology,2016,18(3):126-133 (in Chinese with English abstract).
    [25] 刘自飞,高丽丽,王盛锋,等.常见铁肥品种及其使用效果综述[J].中国土壤与肥料,2012(6):1-9.LIU Z F,GAO L L,WANG S F,et al.Various types of iron fertilizers and their efficiency:a review[J].Soil and fertilizer sciences in China,2012(6):1-9 (in Chinese with English abstract).
    [26] VILLéN M,GARCíA-ARSUAGA A,LUCENA J J.Potential use of biodegradable chelate N-(1,2-dicarboxyethyl)-d,l-aspartic acid/Fe3+ as an Fe fertilizer[J].Journal of agricultural and food chemistry,2007,55(2):402-407.
    [27] PICCINELLI F,SEGA D,MELCHIOR A,et al.Regreening properties of the soil slow-mobile H2bpcd/Fe3+ complex:steps forward to the development of a new environmentally friendly Fe fertilizer[J/OL].Frontiers in plant science,2022,13:964088[2023-11-10].https://doi.org/10.3389/fpls.2022.964088.
    [28] GLUHAR S,KAURIN A,LESTAN D.Soil washing with biodegradable chelating agents and EDTA:technological feasibility,remediation efficiency and environmental sustainability[J/OL].Chemosphere,2020,257:127226[2023-11-10].https://doi.org/10.1016/j.chemosphere.2020.127226.
    [29] 于会丽,司鹏,乔宪生,等.喷施不同铁肥对草莓铁养分吸收和品质的影响[J].中国土壤与肥料,2016(5):73-78.YU H L,SI P,QIAO X S,et al.Iron absorption and quality of strawberry affected by different forms of foliar iron fertilizer[J].Soil and fertilizer sciences in China,2016(5):73-78 (in Chinese with English abstract).
    [30] CUI Z W,LI Y C,ZHANG H,et al.Lighting up agricultural sustainability in the new era through nanozymology: an overview of classifications and their agricultural applications[J/OL].Journal of agricultural and food chemistry,2022:19[2023-11-10].https://doi.org/10.1021/acs.jafc.2c04882.
    [31] HONG Y C,ZHOU Q,HAO Y Q,et al.Crafting the plant root metabolome for improved microbe-assisted stress resilience[J].New phytologist,2022,234(6):1945-1950.
    [32] 杜思垚,方娅婷,鲁剑巍.根系分泌物对作物养分吸收利用的影响研究进展[J].华中农业大学学报,2023,42(2):147-157.DU S Y,FANG Y T,LU J W.Research progress on the effect of root exudates on crop nutrient absorption and utilization[J].Journal of Huazhong Agricultural University,2023,42(2):147-157 (in Chinese with English abstract).
    [33] FOURCROY P,SISó-TERRAZA P,SUDRE D,et al.Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency[J].New phytologist,2014,201(1):155-167.
    [34] XIONG H C,KAKEI Y,KOBAYASHI T,et al.Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil[J].Plant,cell & environment,2013,36(10):1888-1902.
    [35] SCHMID N B,GIEHL R F H,D?LL S,et al.Feruloyl-CoA 6’-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis[J].Plant physiology,2014,164(1):160-172.
    [36] TSAI H H,RODRíGUEZ-CELMA J,LAN P,et al.Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization[J].Plant physiology,2018,177(1):194-207.
    [37] PATRICIA S T,RIOS JUAN J,JAVIER A,et al.Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms[J].New phytologist,2016,209(2):733-745.
    [38] ROBE K,CONEJERO G,GAO F,et al.Coumarin accumulation and trafficking in Arabidopsis thaliana:a complex and dynamic process[J].New phytologist,2021,229(4):2062-2079.
    [39] ROBE K,STASSEN M,CHAMIEH J,et al.Uptake of Fe-fraxetin complexes,an IRT1 independent strategy for iron acquisition in Arabidopsis thaliana[DB/OL].bioRxiv,2021[2023-11-10].https://doi.org/10.1101/2021.08.03.454955.
    [40] CHAO Z F,CHAO D Y.Similarities and differences in iron homeostasis strategies between graminaceous and nongraminaceous plants[J].New phytologist,2022,236(5):1655-1660.
    [41] WANG S D,LI L,YING Y H,et al.A transcription factor OsbHLH156 regulates Strategy Ⅱ iron acquisition through localising IRO2 to the nucleus in rice[J].New phytologist,2020,225(3):1247-1260.
    [42] NOZOYE T,NAKANISHI H,NISHIZAWA N K.Transcriptomic analyses of maize YS1 and YS3 mutants reveal maize iron homeostasis[J].Genomics data,2015,5:97-99.
    [43] KOBAYASHI T,SUZUKI M,INOUE H,et al.Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements[J].Journal of experimental botany,2005,56(415):1305-1316.
    [44] 吴清莹,林宇龙,孙一航,等.根系分泌物对植物生长和土壤养分吸收的影响研究进展[J].中国草地学报,2021,43(11):97-104.WU Q Y,LIN Y L,SUN Y H,et al.Research progress on effects of root exudates on plant growth and soil nutrient uptake[J].Chinese journal of grassland,2021,43(11):97-104 (in Chinese with English abstract).
    [45] GRILLET L,SCHMIDT W.Iron acquisition strategies in land plants:not so different after all[J].New phytologist,2019,224(1):11-18.
    [46] SUZUKI M,NOZOYE T,NAGASAKA S,et al.The detection of endogenous 2’-deoxymugineic acid in olives (Olea europaea L.) indicates the biosynthesis of mugineic acid family phytosiderophores in non-graminaceous plants[J].Soil science and plant nutrition,2016,62(5/6):481-488.
    [47] ASTOLFI S,PII Y,MIMMO T,et al.Single and combined Fe and S deficiency differentially modulate root exudate composition in tomato:a double strategy for Fe acquisition?[J/OL].International journal of molecular sciences,2020,21(11):4038[2023-11-10].https://doi.org/10.3390/ijms21114038.
    [48] VéLEZ-BERMúDEZ I C,SCHMIDT W.Plant strategies to mine iron from alkaline substrates[J].Plant and soil,2023,483(1/2):1-25.
    [49] SUZUKI M,URABE A,SASAKI S,et al.Development of a mugineic acid family phytosiderophore analog as an iron fertilizer[J/OL].Nature communications,2021,12:1558[2023-11-10].https://doi.org/10.1038/s41467-021-21837-6.
    [50] YAMAGATA A,MURATA Y,NAMBA K,et al.Uptake mechanism of iron-phytosiderophore from the soil based on the structure of yellow stripe transporter[J/OL].Nature communications,2022,13:7180[2023-11-10].https://doi.org/10.1038/s41467-022-34930-1.
    [51] UENO D,ITO Y,OHNISHI M,et al.A synthetic phytosiderophore analog,proline-2'-deoxymugineic acid,is efficiently utilized by dicots[J].Plant and soil,2021,469(1):123-134.
    [52] WANG T Q,WANG N Q,LU Q F,et al.The active Fe chelator proline-2’-deoxymugineic acid enhances peanut yield by improving soil Fe availability and plant Fe status[J].Plant,cell & environment,2023,46(1):239-250.
    [53] 申建波,白洋,韦中,等.根际生命共同体:协调资源、环境和粮食安全的学术思路与交叉创新[J].土壤学报,2021,58(4):805-813.SHEN J B,BAI Y,WEI Z,et al.Rhizobiont:an interdisciplinary innovation and perspective for harmonizing resources,environment,and food security[J].Acta pedologica sinica,2021,58(4):805-813 (in Chinese with English abstract).
    [54] WANG N R,HANEY C H.Harnessing the genetic potential of the plant microbiome[J].The biochemist,2020,42(4):20-25.
    [55] SASSE J,MARTINOIA E,NORTHEN T.Feed your friends:do plant exudates shape the root microbiome?[J].Trends in plant science,2018,23(1):25-41.
    [56] TRIVEDI P,LEACH J E,TRINGE S G,et al.Plant-microbiome interactions:from community assembly to plant health[J].Nature reviews microbiology,2020,18(11):607-621.
    [57] JIN C W,HE Y F,TANG C X,et al.Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.)[J].Plant,cell & environment,2006,29(5):888-897.
    [58] RRO?O E,KOSEGARTEN H,HARIZAJ F,et al.The importance of soil microbial activity for the supply of iron to sorghum and rape[J].European journal of agronomy,2003,19(4):487-493.
    [59] TRISTAN L,CéCILE C,CHRISTIAN J,et al.Impact of bacterial siderophores on iron status and ionome in pea[J/OL].Frontiers in plant science,2020,11:730[2023-11-10].https://doi.org/10.3389/fpls.2020.00730.
    [60] TRAPET P,AVOSCAN L,KLINGUER A,et al.The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions[J].Plant physiology,2016,171(1):675-693.
    [61] NAGATA T,OOBO T,AOZASA O.Efficacy of a bacterial siderophore,pyoverdine,to supply iron to Solanum lycopersicum plants[J].Journal of bioscience and bioengineering,2013,115(6):686-690.
    [62] SHIRLEY M,AVOSCAN L,BERNAUD E,et al.Comparison of iron acquisition from Fe–pyoverdine by strategy Ⅰ and strategy Ⅱ plants[J].Botany,2011,89(10):731-735.
    [63] VANSUYT G,ROBIN A,BRIAT J F,et al.Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana[J].Molecular plant-microbe interactions,2007,20(4):441-447.
    [64] DUIJFF B J,DE KOGEL W J,BAKKER P A H M,et al.Influence of pseudobactin 358 on the iron nutrition of barley[J].Soil biology and biochemistry,1994,26(12):1681-1688.
    [65] BECKER J O,MESSENS E,HEDGES R W.The influence of agrobactin on the uptake of ferric iron by plants[J].FEMS microbiology letters,1985,31(3):171-175.
    [66] MANTHEY J A,TISSERAT B,CROWLEY D E.Root responses of sterile-grown onion plants to iron deficiency 1[J].Journal of plant nutrition,1996,19(1):145-161.
    [67] WANG Y,BROWN H N,CROWLEY D E,et al.Evidence for direct utilization of a siderophore,ferrioxamine B,in axenically grown cucumber[J].Plant,cell & environment,1993,16(5):579-585.
    [68] BAR-NESS E,HADAR Y,CHEN Y,et al.Iron uptake by plants from microbial siderophores[J].Plant physiology,1992,99(4):1329-1335.
    [69] CROWLEY D E,REID C P,SZANISZLO P J.Utilization of microbial siderophores in iron acquisition by oat[J].Plant physiology,1988,87(3):680-685.
    [70] YEHUDA Z,SHENKER M,HADAR Y,et al.Remedy of chlorosis induced by iron deficiency in plants with the fungal siderophore rhizoferrin[J].Journal of plant nutrition,2000,23(11/12):1991-2006.
    [71] SHENKER M,CHEN Y,GHIRLANDO R,et al.Chemical structure and biological activity of a siderophore produced by Rhizopus arrhizus[J].Soil Science Society of America journal,1995,59(3):837-843.
    [72] SADRARHAMI A,GROVE J H,ZEINALI H.The microbial siderophore desferrioxamine B inhibits Fe and Zn uptake in three spring wheat genotypes grown in Fe-deficient nutrient solution[J/OL].Journal of plant nutrition,2021:1-11[2023-11-10].https://doi.org/10.1080/01904167.2021.1899205.
    [73] HERMENAU R,ISHIDA K,GAMA S,et al.Gramibactin is a bacterial siderophore with a diazeniumdiolate ligand system[J].Nature chemical biology,2018,14(9):841-843.
    [74] CHEN L M,DICK W A,STREETER J G.Production of aerobactin by microorganisms from a compost enrichment culture and soybean utilization[J].Journal of plant nutrition,2000,23(11/12):2047-2060.
    [75] H?RDT W,R?MHELD V,WINKELMANN G.Fusarinines and dimerum acid,mono- and dihydroxamate siderophores from Penicillium chrysogenum,improve iron utilization by strategy Ⅰ and strategy Ⅱ plants[J].Biometals,2000,13(1):37-46.
    [76] BECKER J O,HEDGES R W,MESSENS E.Inhibitory effect of pseudobactin on the uptake of iron by higher plants[J].Applied and environmental microbiology,1985,49(5):1090-1093.
    [77] DE SERRANO L O,CAMPER A K,RICHARDS A M.An overview of siderophores for iron acquisition in microorganisms living in the extreme[J].BioMetals,2016,29(4):551-571.
    [78] HIDER R C,KONG X L.Chemistry and biology of siderophores[J].Natural product reports,2010,27(5):637-657.
    [79] RAYMOND K N,ALLRED B E,SIA A K.Coordination chemistry of microbial iron transport[J].Accounts of chemical research,2015,48(9):2496-2505.
    [80] CROSA J H,WALSH C T.Genetics and assembly line enzymology of siderophore biosynthesis in bacteria[J].Microbiology and molecular biology reviews:MMBR,2002,66(2):223-249.
    [81] DONADIO S,MONCIARDINI P,SOSIO M.Polyketide synthases and nonribosomal peptide synthetases:the emerging view from bacterial genomics[J].Natural product reports,2007,24(5):1073-1109.
    [82] CARROLL C S,MOORE M M.Ironing out siderophore biosynthesis:a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases[J].Critical reviews in biochemistry and molecular biology,2018,53(4):356-381.
    [83] MIETHKE M,MARAHIEL M A.Siderophore-based iron acquisition and pathogen control[J].Microbiology and molecular biology reviews:MMBR,2007,71(3):413-451.
    [84] KREWULAK K D,VOGEL H J.Structural biology of bacterial iron uptake[J].Biochimica et biophysica acta (BBA) - biomembranes,2008,1778(9):1781-1804.
    [85] SCHALK I J,GUILLON L.Fate of ferrisiderophores after import across bacterial outer membranes:different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways[J].Amino acids,2013,44(5):1267-1277.
    [86] GANNE G,BRILLET K,BASTA B,et al.Iron release from the siderophore pyoverdine in Pseudomonas aeruginosa involves three new actors:FpvC,FpvG,and FpvH[J].ACS chemical biology,2017,12(4):1056-1065.
    [87] KRAMER J,OZKAYA O,KUMMERLI R.Bacterial siderophores in community and host interactions[J].Nature review microbiology,2020,18(3):152-163.
    [88] TROXELL B,HASSAN H M.Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria[J/OL].Frontiers in cellular and infection microbiology,2013,3:59[2023-11-10].https://doi.org/10.3389/fcimb.2013.00059.
    [89] LEONI L,ORSI N,DE LORENZO V,et al.Functional analysis of PvdS,an iron starvation sigma factor of Pseudomonas aeruginosa[J].Journal of bacteriology,2000,182(6):1481-1491.
    [90] CORNELIS P.Iron uptake and metabolism in pseudomonads[J].Applied microbiology and biotechnology,2010,86(6):1637-1645.
    [91] SCHWYN B,NEILANDS J B.Universal chemical assay for the detection and determination of siderophores[J].Analytical biochemistry,1987,160(1):47-56.
    [92] NITHYAPRIYA S,LALITHA S,SAYYED R Z,et al.Production,purification,and characterization of bacillibactin siderophore of Bacillus subtilis and its application for improvement in plant growth and oil content in sesame[J/OL].Sustainability,2021,13(10):5394[2023-11-10].https://doi.org/10.3390/su13105394.
    [93] SARWAR S,KHALIQ A,YOUSRA M,et al.Screening of siderophore-producing PGPRs isolated from groundnut (Arachis hypogaea L.) rhizosphere and their influence on iron release in soil[J].Communications in soil science and plant analysis,2020,51(12):1680-1692.
    [94] CUI K P,XU T,CHEN J W,et al.Siderophores,a potential phosphate solubilizer from the endophyte Streptomyces sp.CoT10,improved phosphorus mobilization for host plant growth and rhizosphere modulation[J/OL].Journal of cleaner production,2022,367:133110[2023-11-10].https://doi.org/10.1016/j.jclepro.2022.133110.
    [95] YEHUDA Z, SHENKER M, ROMHELD V,et al.The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants[J].Plant physiology,1996,112(3):1273-1280.
    [96] CRUMBLISS A L,HARRINGTON J M.Iron sequestration by small molecules:thermodynamic and kinetic studies of natural siderophores and synthetic model compounds[J].Advances in inorganic chemistry,2009,61:179-250.
    [97] VALVERDE S,ARCAS A,LóPEZ-RAYO S,et al.Enantioselective separation of a novel iron chelate prototype with potential use as fertilizer by HPLC-DAD[J].ACS agricultural science & technology,2022,2(6):1166-1170.
    [98] GU S H,WEI Z,SHAO Z Y,et al.Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J].Nature microbiology,2020,5(8):1002-1010.
    [99] SASIREKHA B,SRIVIDYA S.Siderophore production by Pseudomonas aeruginosa FP6,a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli[J].Agriculture and natural resources,2016,50(4):250-256.
    [100] 梁静盈,梁俊峰,陈言柳,等.撕裂蜡孔菌(Emmia lacerata)SR5抑菌特性及生防潜力评价[J].微生物学通报,2023,50(7):2923-2936.LIANG J Y,LIANG J F,CHEN Y L,et al.Antifungal characteristics and biocontrol potential of Emmia lacerata SR5[J].Microbiology China,2023,50(7):2923-2936 (in Chinese with English abstract).
    [101] YU S M,TENG C Y,LIANG J S,et al.Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum[J].Journal of microbiology,2017,55(11):877-884.
    [102] WENSING A,BRAUN S D,BU?TTNER P,et al.Impact of siderophore production by Pseudomonas syringae pv.syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96[J].Applied and environmental microbiology,2010,76(9):2704-2711.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

崔冬明,单晨,史利桦,王坤光,豆哲超,迟志广,王国炜,匡家灵,左元梅.生物源新型铁螯合剂研究进展及其应用[J].华中农业大学学报,2023,42(6):59-72

复制
分享
文章指标
  • 点击次数:1031
  • 下载次数: 2964
  • HTML阅读次数: 378
  • 引用次数: 0
历史
  • 收稿日期:2023-11-10
  • 在线发布日期: 2023-12-12
文章二维码