基于姿态估计和关键点特征向量的奶牛跛行识别方法
CSTR:
作者:
作者单位:

石河子大学机械电气工程学院,石河子 832003

作者简介:

杜粤猛,E-mail:245321481@qq.com

通讯作者:

邓红涛,E-mail:denghtshzu@163.com

中图分类号:

TP391

基金项目:

新疆维吾尔自治区岗位体系专家项目(YTHSD2022-19);石河子大学科研能力提升项目(KX01230305)


A method for cow lameness recognition based on posture estimation and keypoints feature vector
Author:
Affiliation:

School of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对目前养殖场中自动检测奶牛跛行效率低、准确率不高等问题,设计了一种基于姿态估计和膝关节角度特征向量的奶牛跛行识别方法。鉴于奶牛行为具有随机停留的特点,制作奶牛在不同远近视场尺度和观测角度等条件下奶牛姿态估计数据集。将Faster RCNN卷积神经网络模型引入到奶牛关键点检测中提高跛行识别的可靠性;以ResNet101网络作为特征提取网络,构建奶牛姿态估计网络,并采用超参数微调训练方法,对网络模型进行迁移训练。通过视频中的奶牛姿态信息和关键点坐标信息,计算出奶牛行走时膝关节的角度特征,并利用1-D Convolution分类模型实现奶牛的跛行识别。实验结果显示:以ResNet101网络模型为基础的奶牛姿态估计网络的PCK@0.1值可以达到0.925 0;使用1-D Convolution模型对奶牛行为分类识别的准确率为97.22%,与LSTM、Bi-LSTM、GRU模型相比,分别提高5.55、2.78、11.11百分点。以上结果表明,所提方法对自然环境下奶牛跛行有较好的检测效果,可用于奶牛智能化养殖并为养殖管理提供技术参考。

    Abstract:

    To solve the current problems of low efficiency and low accuracy of automatic detection of cow lameness in farms, a cow lameness recognition method based on posture estimation and knee angle eigenvectors was designed. Given the random behavior of dairy cows, a cow posture estimation dataset was produced by combining the imaging characteristics of cows under different conditions such as near and far field of view scales and observation angles. The Faster RCNN convolutional neural network model was introduced into the key point detection of dairy cows to improve the reliability of lameness recognition. Taking ResNet101 network as feature extraction network, the cow posture estimation network was constructed, and the hyperparameter fine-tuning training method was used to train the migration of the network model. Based on the information of cow’s posture and key point coordinate in the video, the angle feature of the cow’s knee joint when walking were calculated, and the 1-D Convolution classification model was used to realize the cow's lameness recognition. The experimental results showed that the PCK@0.1 value of the cow posture estimation network based on ResNet101 network model can reach 0.925 0. Compared with the LSTM, Bi-LSTM, and GRU models, the accuracy of cow behavior classification and recognition of 1-D Convolution model was 97.22%, which was 5.55, 2.78 and 11.11 percentage points higher, respectively. The above results show that the proposed method has a better detection effect on cow lameness in natural environment, which can provide technical reference for intelligent breeding and management of dairy caws.

    表 4 不同分类器精确率、召回率和假阳性率Table 4 Precision(P),recall(R) and false positive rate(F) values of different classifiers
    表 2 ResNet101网络PCK@0.1时各个关键点的检测精确度Table 2 Detection accuracy of each key point of ResNet101 network at PCK@0.1
    表 1 ResNet101特征提取网络在验证集上的检测结果Table 1 Detection results of ResNet101 featureextraction network on the validation set
    表 3 不同特征提取网络对奶牛姿态估计的识别结果Table 3 Identification results of different feature extraction networks for cow posture estimation
    图1 奶牛牛体位置标定和关键点标定Fig.1 Dairy cow body position calibration and key point calibration
    图2 基于姿态估计和膝关节角度特征向量的奶牛行为识别技术路线Fig.2 A technical route to cow behavior recognition based on posture estimation and knee joint angle feature vectors
    图3 奶牛姿态估计网络技术路线Fig.3 Dairy cow posture estimation network technology route
    图4 奶牛姿态估计结果Fig.4 Results of dairy cow stance estimates
    图5 1-D Convolution模型结构Fig.5 1-D Convolution model structure
    图6 ResNet101的准确率变化曲线Fig.6 Accuracy curve of ResNet101
    图7 奶牛姿态估计图及热力图Fig.7 Dairy cow stance estimation diagram and heat map
    图8 HRNet48和ResNet101网络在奶牛跛行、正常行走状态下的姿态估计结果Fig.8 Pose estimation results of HRNet48 and ResNet101 networks for cows in lame, normal walking condition
    图9 未使用Faster RCNN的姿态估计网络和本文方法对奶牛站立、行走的姿态估计结果Fig.9 Posture estimation network without Faster RCNN and the results of this study’s method for estimating the posture of cows standing and walking
    图10 3种行为状态下的奶牛侧视图Fig.10 Side view of a cow in 3 states of behavior
    图11 奶牛3类行为的前腿膝关节角度运动变化曲线Fig.11 Change curve of foreleg knee angle movement for 3 types of behavior in dairy cows
    参考文献
    相似文献
    引证文献
引用本文

杜粤猛,史慧,高峰,邓红涛.基于姿态估计和关键点特征向量的奶牛跛行识别方法[J].华中农业大学学报,2023,42(5):251-261

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-17
  • 在线发布日期: 2023-10-16
文章二维码