基于NDVI和EVI不同植被指数表征的粤港澳大湾区植被空间格局驱动因子影响力比较分析
CSTR:
作者:
作者单位:

1.华南理工大学建筑学院,广州 510641;2.亚热带建筑与城市科学全国重点实验室,广州 510641;3.长江大学医学部,荆州 434023;4.华南理工大学旅游管理系,广州 510641

作者简介:

冯娴慧,E-mail: xhfeng@scut.edu.cn

中图分类号:

Q948;X17

基金项目:

国家自然科学基金项目(51978276)


Influence of driving factors under different vegetation indices of NDVI and EVI in Guangdong-Hong Kong-Macao Greater Bay Area
Author:
Affiliation:

1.School of Architecture, South China University of Technology, Guangzhou 510641, China;2.State Key Laboratory of Subtropical Building and Urban Science, Guangzhou 510641, China;3.Yangtze University Health Science Center, Jingzhou 434023, China;4.Department of Tourism Management, South China University of Technology, Guangzhou 510641, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究归一化植被指数(normalized difference vegetation index,NDVI)和增强植被指数(enhanced vegetation index,EVI)的表征差异是否会造成有关植被研究的结果差异,分别在采用2005—2020年MODIS-NDVI、MODIS-EVI 2种不同遥感植被指数表征粤港澳大湾区植被空间特征的基础上,以同时期17个自然因子和人为因子作为驱动因子,通过地理探测器模型方法,计算各驱动因子对基于NDVI和EVI的植被空间特征的影响力。结果显示,虽然粤港澳大湾区南亚热带-热带植被在NDVI和EVI的表征下,其结果存在差异,但在不同植被指数下,通过地理探测器模型方法计算各驱动因子影响力量化及排序结果基本一致,未受不同植被指数表征差异的影响。在驱动因子中,土地利用类型、高程均是最主要驱动因子,对植被空间分布影响力均超过50%。因子之间均表现出双因子增强作用。土地利用类型协同人口分布因子对NDVI表征下的植被空间分布影响力最强;高程协同人口分布因子对EVI表征下的植被空间分布影响力最强。研究结果表明,虽然NDVI、EVI在表征植被覆盖特征方面存在差异,但是基于不同植被指数计算的驱动因子定量分析结果趋于一致。

    Abstract:

    To investigate whether differences in the representations of the two commonly used vegetation indices, NDVI and EVI, affect vegetation-related studies under different index representations. This study is based on the use of two different remote sensing vegetation indices, MODIS-NDVI and MODIS-EVI, from 2005 to 2020 to characterize the spatial features of vegetation in the Guangdong-Hong Kong-Macao Greater Bay Area. Using 17 natural and anthropogenic factors from the same time period as the driving factor, the effect of the 17 driving factors on the spatial features of the vegetation based on the different indices NDVI and EVI is calculated separately using Geo-detector. The results show that although there are differences in the results of the southern subtropical-tropical vegetation in the Guangdong-Hong Kong-Macao Greater Bay Area as characterized by different vegetation indices in NDVI and EVI, the quantitative and ranking results of the influence of driving factors under different indices calculated by the Geo-detector module are consistent, and are not affected by the differences in index representation. Among the drivers, land use type and elevation are the dominant drivers. Their effect on the spatial distribution of vegetation is greater than 50% under different metrics. Most of the factors have a two-factor enhancement effect on the spatial features of vegetation under different representation metrics. Synergies in population distribution and land use type have the strongest effect on NDVI-based vegetation cover; however, the synergistic effect of the population distribution and elevation has the strongest effect on the vegetation cover based on the EVI index. This study concludes that while the NDVI and EVI indices differ in representing vegetation cover characteristics, the results of the quantitative analysis of drivers remain consistent.

    表 2 NDVI与EVI 均值等级分布统计Table 2 Statistics of NDVI and EVI mean value class distribution
    图1 采样点分布图Fig.1 Distribution map of sample points
    图2 粤港澳大湾区NDVI(A)与EVI(B)的15 a均值空间分布Fig.2 Spatial distribution of 15-year mean values of NDVI (A) and EVI (B) in the Guangdong-Hong Kong-Macao Greater Bay Area
    图3 单驱动因子对NDVI (A)和EVI (B)影响力探测结果Fig.3 Single driving factor detection results of influence on NDVI(A) and EVI(B)
    图4 单驱动因子对NDVI和EVI影响力的区别Fig.4 Comparison of NDVI and EVI influence by single driving factor
    图5 NDVI(A)和EVI(B)双因子交互作用探测结果Fig.5 The double-factor interaction detection results of NDVI (A) and EVI (B)
    参考文献
    [1] 王志慧,李世明,刘良云,等.基于MODIS NDVI时间序列的土地覆盖分层分类方法研究[J].遥感技术与应用,2013,28(5):910-919.WANG Z H,LI S M,LIU L Y,et al.Hierarchical land cover classification based on MODIS NDVI time-series[J].Remote sensing technology and application,2013,28(5):910-919 (in Chinese with English abstract).
    [2] 涂婧林,侯东瑞,陈弋冉,等.国土空间生态修复关键区域系统识别与修复:以武汉市蔡甸区为例[J].华中农业大学学报,2022,41(3):47-55.TU J L,HOU D R,CHEN Y R,et al.Systematic identification and restoration of key areas for ecological restoration of territorial space:a case study of Caidian District,Wuhan City[J].Journal of Huazhong Agricultural University,2022,41(3):47-55 (in Chinese with English abstract).
    [3] 冯娴慧,曾芝琳,张德顺.基于MODIS NDVI数据的粤港澳大湾区植被覆盖时空演变[J].中国城市林业,2022,20(1):1-6,28.FENG X H,ZENG Z L,ZHANG D S.Temporal-spatial evolution of vegetation coverage in Guangdong-HongKong-Macao Greater Bay Area based on MODIS NDVI data[J].Journal of Chinese urban forestry,2022,20(1):1-6,28 (in Chinese with English abstract).
    [4] 张思源,聂莹,张海燕,等.基于地理探测器的内蒙古植被NDVI时空变化与驱动力分析[J].草地学报,2020,28(5):1460-1472.ZHANG S Y,NIE Y,ZHANG H Y,et al.Spatiotemporal variation of vegetation NDVI and its driving forces in inner Mongolia based on geodetector[J].Acta agrestia sinica,2020,28(5):1460-1472 (in Chinese with English abstract).
    [5] ZHAO L C,LI Q Z,ZHANG Y,et al.Normalized NDVI valley area index (NNVAI):based framework for quantitative and timely monitoring of winter wheat frost damage on the Huang-Huai-Hai Plain,China[J/OL].Agriculture,ecosystems & environment,2020,292:106793[2022-11-29].https://doi.org/10.1016/106793.
    [6] 何建村,白云岗,张严俊.基于MODIS数据新疆土壤干旱特征分析[J].干旱区地理,2015,38(4):735-742.HE J C,BAI Y G,ZHANG Y J.Soil drought characteristics in Xinjiang with remote sensing data[J].Arid land geography,2015,38(4):735-742 (in Chinese with English abstract).
    [7] 王正兴,刘闯,ALFREDO H.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报,2003,23(5):979-987.WANG Z X,LIU C,ALFREDO H.From AVHRR-NDVI to MODIS-EVI:advances in vegetation index research[J].Acta ecologica sinica,2003,23(5):979-987 (in Chinese with English abstract).
    [8] LIU H Q,HUETE A.A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J].IEEE transactions on geoscience and remote sensing,1995,33(2):457-465.
    [9] 李红军,郑力,雷玉平,等.基于EOS/MODIS数据的NDVI与EVI比较研究[J].地理科学进展,2007,26(1):26-32.LI H J,ZHENG L,LEI Y P,et al.Comparison of NDVI and EVI based on EOS/MODIS data[J].Progress in geography,2007,26(1):26-32(in Chinese with English abstract).
    [10] 王正兴,刘闯,陈文波,等.MODIS增强型植被指数EVI与NDVI初步比较[J].武汉大学学报(信息科学版),2006,31(5):407-410,427.WANG Z X,LIU C,CHEN W B,et al.Preliminary comparison of MODIS-NDVI and MODIS-EVI in eastern Asia[J].Geomatics and Information Science of Wuhan University,2006,31(5):407-410,427 (in Chinese with English abstract).
    [11] 冯娴慧,曾芝琳.粤港澳大湾区植被覆盖特征与变化趋势的自然驱动力研究[J].生态环境学报,2022,31(9):1713-1724.FENG X H,ZENG Z L.Natural driving forces of vegetation cover characteristics and change trends in the Guangdong-Hong Kong-Macao Greater Bay Area[J].Ecology and environmental sciences,2022,31(9):1713-1724 (in Chinese with English abstract).
    [12] 赵桔超,张韶华,尹晓雪,等.粤港澳大湾区植被覆盖变化及其影响因素分析[J].测绘科学,2022,47(3):75-84.ZHAO J C,ZHANG S H,YIN X X,et al.Changes in vegetation coverage and its influencing factors across the Guangdong-Hong Kong-Macao Greater Bay Area[J].Science of surveying and mapping,2022,47(3):75-84 (in Chinese with English abstract).
    [13] 郑勇,杨武年,刘冲,等.川西高原近20 a植被覆盖变化遥感动态监测及驱动力分析[J].遥感技术与应用,2020,35(6):1447-1456.ZHENG Y,YANG W N,LIU C,et al.Dynamic monitoring and driving force analysis of vegetation cover change in western Sichuan Plateau in recent 20 years[J].Remote sensing technology and application,2020,35(6):1447-1456 (in Chinese with English abstract).
    [14] 阿多,赵文吉,宫兆宁,等.1981—2013华北平原气候时空变化及其对植被覆盖度的影响[J].生态学报,2017,37(2):576-592.A D,ZHAO W J,GONG Z N,et al.Temporal analysis of climate change and its relationship with vegetation cover on the North China plain from 1981 to 2013[J].Acta ecologica sinica,2017,37(2):576-592 (in Chinese with English abstract).
    [15] 穆少杰,李建龙,陈奕兆,等.2001—2010年内蒙古植被覆盖度时空变化特征[J].地理学报,2012,67(9):1255-1268.MU S J,LI J L,CHEN Y Z,et al.Spatial differences of variations of vegetation coverage in inner Mongolia during 2001—2010[J].Acta geographica sinica,2012,67(9):1255-1268 (in Chinese with English abstract).
    [16] 向珈瑶,彭文甫,陶帅.2000—2020年岷江上游植被NDVI时空变化及其地形响应[J].长江流域资源与环境,2022,31(7):1534-1547.XIANG J Y,PENG W F,TAO S.Spatio-temporal changes of vegetation NDVI and its topographic response in the upper reaches of the Minjiang River from 2000 to 2020[J].Resources and environment in the Yangtze Basin,2022,31(7):1534-1547 (in Chinese with English abstract).
    [17] 邓元杰,姚顺波,侯孟阳,等.长江流域中上游植被NDVI时空变化及其地形分异效应[J].长江流域资源与环境,2020,29(1):66-78.DENG Y J,YAO S B,HOU M Y,et al.Temporal and spatial variation of vegetation NDVI and its topographic differentiation effect in the middle and upper reaches of the Yangtze River Basin[J].Resources and environment in the Yangtze Basin,2020,29(1):66-78 (in Chinese with English abstract).
    [18] 解晗,同小娟,李俊,等.2000—2018年黄河流域生长季植被指数变化及其对气候因子的响应[J].生态学报,2022,42(11):4536-4549.XIE H,TONG X J,LI J,et al.Changes of NDVI and EVI and their responses to climatic variables in the Yellow River Basin during the growing season of 2000—2018[J].Acta ecologica sinica,2022,42(11):4536-4549 (in Chinese with English abstract).
    [19] 张翀,白子怡,李学梅,等.2001—2018年黄土高原植被覆盖人为影响时空演变及归因分析[J].干旱区地理,2021,44(1):188-196.ZHANG C,BAI Z Y,LI X M,et al.Spatio-temporal evolution and attribution analysis of human effects of vegetation cover on the Loess Plateau from 2001 to 2018[J].Arid land geography,2021,44(1):188-196 (in Chinese with English abstract).
    [20] 魏晓旭,魏伟,刘春芳.近40年青海省草地植被时空变化及其与人类活动的关系[J].生态学杂志,2021,40(8):2541-2552.WEI X X,WEI W,LIU C F.Spatiotemporal variation of grassland vegetation and its relationship with human activities in Qinghai Province in recent 40 years[J].Chinese journal of ecology,2021,40(8):2541-2552 (in Chinese with English abstract).
    [21] 陶帅,邝婷婷,彭文甫,等.2000—2015年长江上游NDVI时空变化及驱动力:以宜宾市为例[J].生态学报,2020,40(14):5029-5043.TAO S,KUANG T T,PENG W F,et al.Analyzing the spatio-temporal variation and drivers of NDVI in upper reaches of the Yangtze River from 2000 to 2015:a case study of Yibin City[J].Acta ecologica sinica,2020,40(14):5029-5043 (in Chinese with English abstract).
    [22] 吕泳洁,丁文广,邓喆,等.基于地理探测器的甘肃省植被覆盖时空变化及驱动力分析[J].地球环境学报,2022,13(2):185-195.Lü Y J,DING W G,DENG Z,et al.Spatiotemporal variation of vegetation cover and its driving forces in Gansu Province based on geodetector[J].Journal of earth environment,2022,13(2):185-195 (in Chinese with English abstract).
    [23] 裴志林,杨勤科,王春梅,等.黄河上游植被覆盖度空间分布特征及其影响因素[J].干旱区研究,2019,36(3):546-555.PEI Z L,YANG Q K,WANG C M,et al.Spatial distribution of vegetation coverage and its affecting factors in the upper reaches of the Yellow River[J].Arid zone research,2019,36(3):546-555 (in Chinese with English abstract).
    [24] 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134.WANG J F,XU C D.Geodetector:principle and prospective[J].Acta geographica sinica,2017,72(1):116-134 (in Chinese with English abstract).
    [25] 何全军.基于MODIS数据的珠三角地区NDVI时空变化特征及对气象因素的响应[J].生态环境学报,2019,28(9):1722-1730.HE Q J.Spatio-temporal variation of NDVI and its response to meteorological factors in Pearl River Delta based on MODIS data[J].Ecology and environmental sciences,2019,28(9):1722-1730(in Chinese with English abstract).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

冯娴慧,曾芝琳,景美兮,高克昌,肖毅强.基于NDVI和EVI不同植被指数表征的粤港澳大湾区植被空间格局驱动因子影响力比较分析[J].华中农业大学学报,2023,42(4):116-124

复制
分享
文章指标
  • 点击次数:781
  • 下载次数: 1439
  • HTML阅读次数: 79
  • 引用次数: 0
历史
  • 收稿日期:2022-11-29
  • 在线发布日期: 2023-08-30
文章二维码