面向作物表型分析的大豆植株叶片语义重建
CSTR:
作者:
作者单位:

1.华南农业大学数学与信息学院,广州 510642;2.华南理工大学计算机科学与工程学院,广州 510006;3.华南农业大学农学院,广州 510642;4.广州市智慧农业重点实验室,广州 510642

作者简介:

高月芳,E-mail:gaoyuefang@scau.edu.cn

通讯作者:

杨存义,E-mail:ycy@scau.edu.cn

中图分类号:

S126

基金项目:

广东省重点研发项目(2020B020220008);广州市科技计划项目(201902010081)


Soybean leaf 3D semantic reconstruction for plant phenotype analysis
Author:
Affiliation:

1.College of Mathematics and Informatics,South China Agricultural University, Guangzhou 510642,China;2.School of Computer Science & Engineering,South China University of Technology, Guangzhou 510006,China;3.College of Agriculture,South China Agricultural University,Guangzhou 510642,China;4.Guangzhou Key Laboratory of Intelligent Agriculture,Guangzhou 510642,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为解决三维扫描仪、多视图数据获取的三维点云因缺少语义信息导致难以从点云上判别植株器官部位问题,提出一种二维先验语义嵌入的大豆植株叶片三维语义建模方法:首先,基于Mask R-CNN模型对大豆叶片进行语义分割;然后,对分割结果和多视图数据进行立体重建融合学习,实现大豆植株叶片二维语义到三维叶片点云迁移,获得植株叶片点云语义信息,进而建立植株叶片三维语义模型。通过多组盆栽大豆植株试验对该模型进行验证,提取叶长和叶宽与人工实测数据进行对比分析,叶长和叶宽均方误差分别为2.53 和1.52 mm,决定系数分别为0.97和0.89。结果表明,该方法能够便捷、精准地构建植株叶片三维语义模型。

    Abstract:

    The 3D point clouds obtained from 3D scanner and multi-view data lack semantic information,leading to difficulties in discriminating the plant organ parts from the point clouds when the number of plant point clouds is large,or when different organs of the plant are similarly colored or obscured.To deal with the problem,this article proposes a three-dimensional semantic modeling method for soybean leaves embedded with a two-dimensional semantic prior.The semantic segmentation of soybean leaves based on Mask R-CNN was conducted.The three-dimensional reconstruction,fusion and learning of the segmentation results and multi-view data were performed to transfer the semantic information of leave from 2D semantics to 3D point clouds and obtain the point cloud semantic information of plant leaf.The 3D semantic model of plant leaves was established.The model was validated through multiple sets of potted soybean plant experiments.The length and width of leaf were extracted and compared with the manual measurement data.Results showed that the mean square error of the length and width of leaf was 2.53 and 1.52 mm,with the determination coefficients of 0.97 and 0.89,respectively.It is indicated that the proposed method can conveniently and accurately construct the 3D semantic model of plant leaves.

    表 1 原始与带有语义信息的大豆植株图片重建开销对比Table 1 Reconstruction cost of soybean plant with/without leaf semantic information
    图1 数据采集平台及结构图Fig.1 Data acquisition platform and structure diagram
    图2 大豆植株叶片标注Fig.2 Samples of soybean plant with leaf label
    图3 大豆植株叶片语义建模流程Fig.3 Pipeline of semantic model of soybean plant leaf
    图4 大豆植株叶片语义分割Fig.4 Semantic segmentation of soybean plant leaf
    图5 包含叶片语义的大豆植株稀疏三维点云重建Fig.5 Sparse reconstruction process of soybean plant with leaf semantics
    图6 包含叶片语义的大豆植株稠密点云重建流程Fig.6 Flow chart of dense reconstruction of soybean plant with leaf semantics
    图7 不同采集环境大豆植株三维重建效果Fig.7 3D reconstruction of soybean plant under different scenes
    图8 不同类型大豆植株幼苗叶片语义分割图Fig.8 Leaf semantics segmentation of different soybean plant seedlings
    图9 基于原始图像和带叶片语义信息图像的大豆植株点云图Fig.9 Soybean plant point cloud based on with/without leaf semantic information
    图10 大豆叶片语义点云提取Fig.10 Soybean leaf semantic point cloud extraction
    图11 大豆植株叶片精度对比Fig.11 Accuracy comparison of soybean leaf measurement
    图12 不同大小大豆植株叶片语义点云图Fig.12 Semantic point cloud of soybean plants with different sizes
    图13 同株不同视图数量的大豆植株叶片语义重建Fig.13 Semantic reconstruction of soybean plant leaves from the same plant with different images
    表 3 带有语义信息的图像重建开销对比Table 3 Reconstruction cost of soybean plant with leaf semantic information
    表 2 大豆植株叶长、叶宽度量Table 2 Phenotypic measurement of length and width of leaves
    参考文献
    相似文献
    引证文献
引用本文

高月芳,肖冬冬,傅汝佳,冼楚华,李桂清,黄琼,杨存义.面向作物表型分析的大豆植株叶片语义重建[J].华中农业大学学报,2023,42(3):177-186

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-19
  • 在线发布日期: 2023-06-20
文章二维码