基于统计纹理残差学习网络的葡萄叶片分类方法
CSTR:
作者:
作者单位:

1.西北农林科技大学信息工程学院,杨凌 712100;2.西北农林科技大学葡萄酒学院,杨凌 712100

作者简介:

唐恒翱,E-mail: df15195579@163.com

通讯作者:

张宏鸣, E-mail: zhm@nwsuaf.edu.cn

中图分类号:

TP391.4

基金项目:

国家重点研发计划项目(2020YFD1100601);陕西省科技厅项目(2023YBNY217);陕西省秦创原“科学家+工程师”建设项目(2022KXJ-67)


Fine-grained classification of grape leaves based on statistical texture residual learning network
Author:
Affiliation:

1.College of Information Engineering, Northwest A&F University,Yangling 712100, China;2.College of Enology, Northwest A&F University, Yangling 712100, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对葡萄叶片类间相似度高导致的类内品种分类精度低的问题,构建一种改进的统计纹理残差学习网络(statistical texture residual learning network, STRLNet)的葡萄叶片分类方法。首先在ResNet50骨干网络的基础上添加SE注意力机制,然后构建底层信息的特征增强层,最后将增强后的底层特征与骨干网络提取的高层语义信息相融合,输出连接到用于存储分类特性的全连接层上。利用采集的11种成熟期葡萄叶片数据集进行训练测试,结果显示,STRLNet在提高网络空间性能的同时可充分利用底层特征信息,对构建的葡萄叶片数据集的分类准确率可以达到92.26%,相较于ResNet骨干网络提高了约2.8个百分点,与VGG16、Inception v4和ResNet等主流分类网络相比在葡萄叶片细粒度分类中具有更高的准确性。研究结果表明,在多品种的葡萄叶片分类任务中,改进后的模型相较于骨干网络可以关注到更多的特征信息,相较于主流分类网络模型可以获得更高的分类精度,模型性能得到进一步的提升。

    Abstract:

    An improved statistical texture residual learning network (STRLNet) for the fine-grained classification of grape leaves was constructed to solve the problem of low classification accuracy of intra-class varieties caused by high inter-class similarity between grape leaves. SE attention mechanism was added on the basis of ResNet50 backbone network. The feature enhancement layer of the underlying information was built. The enhanced underlying features with the high-level semantic information extracted from the backbone network were integrated. The output was connected to the full connection layer used for storing the characteristics of classification. The collected dataset of mature grape leaves of 11 cultivars were used for training and testing. The results showed that STRLNet fully utilized the underlying feature information while improving the spatial performance of the network, with a classification accuracy of 92.26% for the collected dataset of grape leaves. It was about 2.8 percentage points higher than that of the ResNet backbone network. It had higher accuracy in fine-grained classification of grape leaves compared with mainstream classification networks including VGG16, Inception v4, and ResNet. It is indicated that the improved model can focus on more feature information compared with the backbone network in the classification of grape leaves from multi-cultivars. It can achieve higher classification accuracy compared with the mainstream classification network models and further improve model performance.

    表 1 11个葡萄品种叶片分类的准确性Table 1 Accuracy of the classification of grape leaves for the 11 cultivars with Pyramid TriResNet50se
    图1 11个葡萄品种叶片样品Fig.1 11 cultivars of grape leaves used in the experiment
    图2 ResNet50se内部结构Fig.2 ResNet50se internal structure
    图3 统计纹理残差学习网络结构Fig.3 Statistical texture residual learning network
    图4 主干分类器和STRLNet分类器的Grad-CAM图对比Fig.4 Grad-CAM of the backbone and the STRLNet classifiers
    图5 葡萄叶片数据集的统计纹理残差学习网络的混淆矩阵Fig.5 Confusion matrix of the statistical texture residual learning network for the grape leaf dataset
    图6 STRLNet分类器在不同品种的Grad-CAM图Fig.6 STRLNet classifer Grad-CAM plots of classifiers in different varieties
    参考文献
    相似文献
    引证文献
引用本文

唐恒翱,李杭昊,孙志同,孟江飞,杨博宇,张宏鸣.基于统计纹理残差学习网络的葡萄叶片分类方法[J].华中农业大学学报,2023,42(3):169-176

复制
分享
文章指标
  • 点击次数:633
  • 下载次数: 953
  • HTML阅读次数: 348
  • 引用次数: 0
历史
  • 收稿日期:2022-11-02
  • 在线发布日期: 2023-06-20
文章二维码