基于改进Inception网络的复杂环境下小样本黄瓜叶片病害识别
CSTR:
作者:
作者单位:

1.安徽农业大学信息与计算机学院,合肥 230036;2.安徽省公安教育研究院,合肥 230031;3.合肥工业大学计算机与信息学院,合肥 230601

作者简介:

满超, E-mail:935528860@qq.com

通讯作者:

饶元, E-mail:raoyuan@ahau.edu.cn

中图分类号:

TP391.4;S435

基金项目:

安徽省自然科学基金项目(2008085MF203);安徽省重点研究和开发计划面上攻关项目(201904A06020056);安徽省高校自然科学研究重点项目(2022AH053088)


Recognition of cucumber leaf disease with small samples in complex environment based on improved Inception network
Author:
Affiliation:

1.School of Information and Computer,Anhui Agricultural University, Hefei 230036,China;2.Anhui Academy of Public Security Education, Hefei 230031,China;3.School of Computer Science and Information Engineering,Hefei University of Technology, Hefei 230601,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为解决田间复杂环境下小样本黄瓜叶片病害识别中模型泛化能力差、识别准确率不高的问题,将自注意力机制模块引入激活重建生成对抗网络(activation reconstruction GAN,AR-GAN),采用Smooth L1正则化作为损失函数,设计改进激活重建生成对抗网络IAR-GAN(improved AR-GAN)增广黄瓜叶片病害图像。通过在Inception网络基础上加入空洞卷积和形变卷积,设计空洞和形变卷积神经网络(dilated and deformable convolutional neural network,DDCNN)用于黄瓜叶片病害识别。试验结果显示,提出的IAR-GAN有效缓解了过拟合现象,丰富了生成样本的多样性;所提出的DDCNN对黄瓜炭疽病、斑靶病和霜霉病的平均识别准确率均达到96%以上,比Inception-V3模型提高了9个百分点。以上结果表明,本研究提出的数据增广方法和病害识别模型可为复杂环境下小样本的作物叶部病害的准确识别提供新思路。

    Abstract:

    In order to solve the problems of poor generalization ability and low recognition accuracy in the identification of cucumber leaf disease with small samples under complex field environment, the self-attention mechanism module was introduced into the activation reconstruction network AR-GAN (activation reconstruction GAN), and the smooth L1 regularization was used as the loss function to design and improve the activation reconstruction network IAR-GAN (improved AR-GAN) to expand the cucumber leaf disease image. By adding void convolution and deformation convolution on the basis of the Inception network, the void and deformation convolution neural network (DDCNN) was designed for cucumber leaf disease identification. The test results showed that the proposed IAR-GAN effectively alleviated the over-fitting phenomenon and enriched the diversity of generated samples. The average recognition accuracy of the proposed DDCNN for cucumber anthracnose, spot target disease and downy mildew was more than 96%, which is 9% higher than the Inrception-V3 model. The above results showed that the data expansion method and disease identification model proposed in this paper can provide new ideas for the accurate identification of crop leaf diseases with small samples in complex environments.

    表 1 两阶段图像分割方法的识别准确率Table 1 Accuracy rate of disease recognition results with two-stage image segmentation methods
    表 4 不同深度学习方法的病害识别结果Table 4 Disease recognition results of different deep learning methods
    表 2 不同数据增广方法下病害识别结果Table 2 Disease recognition results with different data augmentation methods
    图1 黄瓜叶片病害类型Fig.1 Types of cucumber leaf diseases
    图2 两阶段病斑图像分割过程Fig.2 Two-stage image segmentation method
    图3 IAR-GAN网络架构Fig.3 The framework IAR-GAN
    图4 标准卷积(A)与空洞卷积(B、C)采样位置Fig.4 Sampling position of standard convolution (A)and dilated convolution(B,C)
    图5 标准卷积(A)和形变卷积(B~D)采样位置Fig.5 Sampling position of standard convolution(A) and deformable convolution(B-D)
    图6 DDCNN结构Fig.6 The structure of DDCNN
    表 3 IAR-GAN结合传统数据增广方法下的识别结果Table 3 Disease recognition results with combination of IAR-GAN and traditional data augmentation methods
    参考文献
    相似文献
    引证文献
引用本文

满超,饶元,张敬尧,乔焰,王胜和.基于改进Inception网络的复杂环境下小样本黄瓜叶片病害识别[J].华中农业大学学报,2023,42(3):152-160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-02
  • 在线发布日期: 2023-06-20
文章二维码