融合注意力机制的Cascade R-CNN田间害虫检测方法
CSTR:
作者:
作者单位:

1.华中农业大学信息学院,武汉 430070;2.上海云农信息科技有限公司,上海 201299;3.华中农业大学植物科学技术学院,武汉 430070

作者简介:

刘志,E-mail:1451097369@qq.com

通讯作者:

翟瑞芳,E-mail:rfzhai@mail.hzau.edu.cn

中图分类号:

TP391.41;S126

基金项目:

国家自然科学基金联合基金项目(U21A20205);中央高校基本科研业务费专项(2662022JC004)


Field pest detection method based on improved Cascade R-CNN by incorporating attention mechanism
Author:
Affiliation:

1.College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;2.Shanghai Yunnong Information Technology Co., Ltd., Shanghai 201299, China;3.College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为解决测报灯采集图像中害虫依赖人工识别及统计结果可靠性低和准确性差的问题,本研究提出一种改进型Cascade R-CNN田间害虫检测算法。该算法以Cascade R-CNN为基础框架,采用ResNeSt-50作为主干网络,融合了跨通道注意力机制;使用统一目标检测头(unifying object detection heads with attentions,DyHead),并融合尺度感知、空间位置感知和任务感知。此外,采用简单复制-粘贴(simple copy-paste,SCP)方法进行了数据增强。研究共采集到20类害虫总计1 500张图像,制作了符合MS COCO格式(microsoft common objects in context 2017, MS COCO 2017)的测报灯田间害虫数据集。结果显示,本研究提出的方法的F1分数(F1-score)达到了86.2%。当交并比(intersection over union ,IoU)为0.5时,其F1-分数与经典Cascade R-CNN、Faster R-CNN和YOLOv4相比,分别提升了2.8、5.8和8.2个百分点。表明该方法满足测报灯害虫检测任务对判别能力和实时性的要求,实现了害虫的高精度自动识别与计数,可直接应用于田间害虫检测。

    Abstract:

    In order to address the challenges of manual identification of pests in images collected by light traps, as well as the low reliability and poor accuracy of statistical results, this study proposes an improved Cascade R-CNN algorithm for field pest detection. The algorithm is based on the Cascade R-CNN framework and uses ResNeSt-50 as the backbone network, incorporating cross-channel attention mechanisms to obtain feature maps more conducive to pest detection. A unifying object detection head with attentions (DyHead) is used, incorporating scale awareness, spatial position awareness, and task awareness to improve the performance of the detection head. Additionally, the simple copy-paste (SCP) method is employed for data augmentation to enhance the model’s detection capabilities in complex scenarios. A total of 1 500 images of 20 pest categories were collected, and a monitoring lamp field pest dataset compliant with the microsoft common objects in context (MS COCO 2017) format was created. The results show that the F1-score of the proposed method reaches 86.2%. When the intersection over union (IoU) is set to 0.5, the F1-score increases by 2.8, 5.8, and 8.2 percentages compared to the classic Cascade R-CNN, Faster R-CNN, and YOLOv4, respectively. The results shows that the proposed method meets the requirements of discriminative ability and real-time performance for monitoring lamp pest detection tasks, achieving high-precision automatic identification and counting of pests, and can be directly applied to field pest detection.

    表 1 消融实验数据Table 1 Pest identification results
    表 2 不同模型对比试验数据Table 2 Comparing experimental data of different models
    图1 测报灯结构(A)和拍摄环境(B、C)Fig.1 Structure diagram (A) and shooting environment of telemetering lamp (B,C)
    图2 20类害虫图像Fig.2 Images of 20 types of pests
    图3 SCP数据增强结果Fig.3 SCP data enhancement results
    图4 改进型Cascade R-CNN结构Fig.4 Improved Cascade R-CNN structure diagram
    图5 ResNeSt结构Fig.5 ResNeSt structure diagram
    图6 DyHead原理图Fig.6 Schematic diagram of DyHead
    图7 训练过程损失函数变化曲线Fig.7 Loss curves of training
    图8 害虫检测效果对比图Fig.8 Image of the pest detection effect comparison
    参考文献
    [1] 盛承发.间接性害虫为害与作物产量损失的关系Ⅰ.食叶害虫[J].应用生态学报,1993,4(2):192-197.SHENG C F.Relationship of crop yield to feeding injury by indirect insect and mite pests.Ⅰ.Leaf eating insect pests[J].Chinese journal of applied ecology,1993,4(2):192-197 (in Chinese with English abstract).
    [2] 李改完,王艳,冀晓燕.基层病虫测报工作存在问题及对策[J].现代农村科技,2011(7):4-5.LI G W,WANG Y,JI X Y.Problems and countermeasures of grass-roots pest forecasting work[J].Modern agricultural science and technology,2011(7):4-5 (in Chinese).
    [3] DING W G,TAYLOR G.Automatic moth detection from trap images for pest management[J].Computers and electronics in agriculture,2016,123:17-28.
    [4] 杨红珍,张建伟,李湘涛,等.基于图像的昆虫远程自动识别系统的研究[J].农业工程学报,2008,24(1):188-192.YANG H Z,ZHANG J W,LI X T,et al.Remote automatic identification system based on insect image[J].Transactions of the CSAE,2008,24(1):188-192 (in Chinese with English abstract).
    [5] 张建伟,王永模,沈佐锐.麦田蚜虫自动计数研究[J].农业工程学报,2006,22(9):159-162.ZHANG J W,WANG Y M,SHEN Z R.Novel method for estimating cereal aphid population based on computer vision technology[J].Transactions of the CSAE,2006,22(9):159-162 (in Chinese with English abstract).
    [6] 张红涛,刘迦南,谭联,等.基于计算机视觉的棉铃虫成虫雌雄自动判别研究[J].环境昆虫学报,2019,41(4):908-913.ZHANG H T,LIU J N,TAN L,et al.Study on utomatic discrimination of male and female imagoes of Helicoverpa armigera(Hübner)based on computer vision[J].Journal of environmental entomology,2019,41(4):908-913 (in Chinese with English abstract).
    [7] 潘梅,李光辉,周小波,等.基于机器视觉的茶园害虫智能识别系统研究与实现[J].现代农业科技,2019(18):229-230,233.PAN M,LI G H,ZHOU X B,et al.Research and implementation of intelligent recognition system for tea garden pest based on machine vision[J].Modern agricultural science and technology,2019(18):229-230,233 (in Chinese with English abstract).
    [8] 荆晓冉.基于图像的害虫自动计数与识别系统的研究[D].杭州:浙江大学,2014.JING X R.Study on automatic pest counting and identification system based on image[D].Hangzhou:Zhejiang University,2014 (in Chinese with English abstract).
    [9] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1.December 7 - 12,2015,Montreal,Canada.New York:ACM,2015:91–99.
    [10] QIAO S Y,CHEN L C,YUILLE A.DetectoRS:detecting objects with recursive feature pyramid and switchable atrous convolution[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),June 20-25,2021,Nashville,TN,USA.Nashville:IEEE,2021:10208-10219.
    [11] WANG Z B,WANG K Y,LIU Z Q,et al.A cognitive vision method for insect pest image segmentation[J].IFAC-PapersOnLine,2018,51(17):85-89.
    [12] SUN Y,LIU X X,YUAN M S,et al.Automatic in-trap pest detection using deep learning for pheromone-based Dendroctonus valens monitoring[J].Biosystems engineering,2018,176:140-150.
    [13] LIU L,WANG R J,XIE C J,et al.PestNet:an end-to-end deep learning approach for large-scale multi-class pest detection and classification[J].IEEE access,2019,7:45301-45312.
    [14] 甘雨,郭庆文,王春桃,等.基于改进EfficientNet模型的作物害虫识别[J].农业工程学报,2022,38(1):203-211.GAN Y,GUO Q W,WANG C T,et al.Recognizing crop pests using an improved EfficientNet model[J].Transactions of the CSAE,2022,38(1):203-211 (in Chinese with English abstract).
    [15] 张善文,许新华,齐国红,等.基于可形变VGG-16模型的田间作物害虫检测方法[J].农业工程学报,2021,37(18):188-194.ZHANG S W,XU X H,QI G H,et al.Detecting the pest disease of field crops using deformable VGG-16 model[J].Transactions of the CSAE,2021,37(18):188-194 (in Chinese with English abstract).
    [16] 鲍文霞,吴德钊,胡根生,等.基于轻量型残差网络的自然场景水稻害虫识别[J].农业工程学报,2021,37(16):145-152.BAO W X,WU D Z,HU G S,et al.Rice pest identification in natural scene based on lightweight residual network[J].Transactions of the CSAE,2021,37(16):145-152 (in Chinese with English abstract).
    [17] 蔡润基, 江方湧, 郑涛涛, 等. 深度模型融合数据合成机制的长尾目标识别[J/OL]. 华中农业大学学报: 1-10[2023-02-13].http://kns.cnki.net/kcms/detail/42.1181.S.20230112.1916.002.html.CAI R J, JIANG F Y, ZHENG T T, et al. Synthetic samples combined model-based recognition of long-tailed target[J/OL].Journal of Huazhong Agricultural University, 2023: 1-10[2023-02-13].http://kns.cnki.net/kcms/detail/42.1181.S.20230112.1916.002.html (in Chinese with English abstract) .
    [18] 姚青,吴叔珍,蒯乃阳,等.基于改进CornerNet的水稻灯诱飞虱自动检测方法构建与验证[J].农业工程学报,2021,37(7):183-189.YAO Q,WU S Z,KUAI N Y,et al.Automatic detection of rice planthoppers through light-trap insect images using improved CornerNet[J].Transactions of the CSAE,2021,37(7):183-189 (in Chinese with English abstract).
    [19] 张诗雨,夏凯,杜晓晨,等.一种基于聚类特征的Faster R-CNN粮仓害虫检测方法[J].中国粮油学报,2020,35(4):165-172.ZHANG S Y,XIA K,DU X C,et al.A faster R-CNN method for insect detection in granary based on clustering feature[J].Journal of the Chinese cereals and oils association,2020,35(4):165-172 (in Chinese with English abstract).
    [20] 张博,张苗辉,陈运忠.基于空间金字塔池化和深度卷积神经网络的作物害虫识别[J].农业工程学报,2019,35(19):209-215.ZHANG B,ZHANG M H,CHEN Y Z.Crop pest identification based on spatial pyramid pooling and deep convolution neural network[J].Transactions of the CSAE,2019,35(19):209-215 (in Chinese with English abstract).
    [21] GHIASI G,CUI Y,SRINIVAS A,et al.Simple copy-paste is a strong data augmentation method for instance segmentation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),June 20-25,2021,Nashville,TN,USA.Nashville:IEEE,2021:2917-2927.
    [22] ZHANG H,WU C R,ZHANG Z Y,et al.ResNeSt:split-attention networks[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),June 19-20,2022.New Orleans,LA,USA:IEEE,2022:2735-2745.
    [23] DAI X Y,CHEN Y P,XIAO B,et al.Dynamic head:unifying object detection heads with attentions[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),June 20-25,2021.Nashville,TN,USA:IEEE,2021:7369-7378.
    [24] CAI Z W,VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,une 18-23,2018,Salt Lake City,UT,USA.Salt Lake City:IEEE,2018:6154-6162.
    [25] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV),October 22-29,2017.Venice,Italy:IEEE,2017:2999-3007.
    [26] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[DB/OL].arXiv,2020:2004.10934.https://doi.org/10.48550/arXiv.2004.10934.
    [27] GE Z,LIU S T,WANG F,et al.YOLOX:exceeding YOLO series in 2021[DB/OL].arXiv,2021:2107.08430.https://doi.org/10.48550/arXiv.2107.08430.
    [28] VU T,JANG H,PHAM T X,et al.Cascade RPN:delving into high-quality region proposal network with adaptive convolution[DB/OL].arXiv,2019:1909.06720.https://doi.org/10.48550/arXiv.1909.06720.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘志,翟瑞芳,彭万伟,陈珂屹,杨万能.融合注意力机制的Cascade R-CNN田间害虫检测方法[J].华中农业大学学报,2023,42(3):133-142

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-13
  • 在线发布日期: 2023-06-20
文章二维码