基于机器视觉的温室蓝莓花期蜜蜂授粉监测
CSTR:
作者:
作者单位:

1.大连大学信息工程学院,大连 116622;2.大连市现代农业生产发展服务中心,大连 116000

通讯作者:

汪祖民,E-mail: wangzumin@dlu.edu.cn

中图分类号:

TP391

基金项目:

国家自然科学青年基金项目(61601076);大连市科技创新基金项目(2020JJ26SN058,2021JJ13SN78)胡玲艳,E-mail: hulingyan@dlu.edu.cn


Machine vision-based monitoring honeybee pollination of blueberry in greenhouse
Author:
Affiliation:

1.College of Information Engineering, Dalian University, Dalian 116622, China;2.Dalian Modern Agricultural Production Development Service Center, Dalian 116000, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为评估日光温室蓝莓开花窗口期内授粉蜜蜂投放量的合理性,基于机器视觉对蓝莓的蜜蜂授粉次数进行统计。针对检测环境复杂、目标尺度小、易被遮挡等问题,对数据集进行改进泊松融合数据增强处理;并优化设计YOLOv5模型结构,通过引入GAM注意力机制和Transformer模块,增强模型特征提取能力,特征金字塔网络采用BiFPN结构及CARAFE模块补充上下文信息;使用EIoU损失函数和Soft NMS边界框筛选算法,提高边界框的定位精度,解决目标遮挡漏检问题。结果显示,改进后网络的平均精度均值达到96.6%,较原网络提高3.5个百分点,在GPU上对单张蓝莓授粉图像的平均检测时间为11.4 ms。研究结果表明,本研究建立的模型的识别准确度、检测速度及鲁棒性能满足对蓝莓的蜜蜂授粉次数的实时监测。

    Abstract:

    The statistics of pollination times of honeybee was evaluated based on machine vision to evaluate the rationality of the dosage of pollinating honeybee during the window period of blueberry blooming in the solar greenhouse. The dataset was processed with the method of improved poisson blending data enhancement to solve problems that the detection environment is complex, the target scale is small, and it is easy to be covered. The structure of YOLOv5 was optimized. The detection precision of model was improved by introducing GAM attention mechanism and Transformer module. BiFPN and CARAFE were introduced in feature pyramid network to complement the contextual information. EIoU_loss and Soft NMS were used to enhance the positioning precision of bounding box and solve the problem of detecting target occlusion. The results showed that the mean average precision of the improved YOLOv5 was 96.6%, 3.5 percentage points higher than that of the original algorithm. The detection time of a single blueberry pollination image on the GPU was 11.4 ms.

    表 4 不同数据增强方法的检测效果Table 4 Contrast experiment of different data enhancement method
    表 1 不同YOLOv5模型检测性能对比Table 1 Contrast experiment of different YOLOv5 models
    表 3 不同目标检测算法的比较Table 3 Contrast experiment of different object detection algorithm
    图1 数据采集设备以及部分数据集的样本示例Fig.1 Part samples of the datasets and data acquisition equipment
    图2 改进泊松融合数据增强方法结构Fig.2 The structure of improved Poisson blending data enhancement method
    图3 改进泊松融合算法步骤图Fig.3 Step of improved Poisson blending algorithm
    图4 融合后的蓝莓授粉样本Fig.4 Samples of blueberry pollination after fusion
    图5 GAMC3模块结构图Fig.5 GAMC3 module structure
    图6 GAM注意力模块结构Fig.6 Structure of GAM Attention
    图7 MSC3模块结构图Fig.7 MSC3 module structure
    图8 改进的YOLOv5网络结构Fig.8 Structure of improved YOLOv5
    图9 损失值变化曲线Fig.9 Loss value curve
    图10 特征可视化对比图Fig.10 Comparison of feature visualization
    图11 改进前后的检测效果对比Fig.11 Comparison of detection effect of before and after improvement
    图12 不同场景下的检测效果对比Fig.12 Comparison of detection effect in different scenarios
    表 2 消融实验结果Table 2 Ablation experiment result
    参考文献
    相似文献
    引证文献
引用本文

胡玲艳,孙浩,徐国辉,郭睿雅,郭占俊,陈鹏宇,裴悦琨,汪祖民.基于机器视觉的温室蓝莓花期蜜蜂授粉监测[J].华中农业大学学报,2023,42(3):105-114

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-12
  • 在线发布日期: 2023-06-20
文章二维码