基于激光雷达和Kinect相机点云融合的单木三维重建
CSTR:
作者:
作者单位:

1.华南农业大学电子工程学院(人工智能学院),广州 510642;2.国家精准农业航空施药技术国际联合研究中心,广州 510642;3.农村农业部华南智慧农业公共研发中心,广州 510520

作者简介:

彭孝东,E-mail:pxd2005@scau.edu.cn

通讯作者:

兰玉彬,E-mail:ylan@scau.edu.cn

中图分类号:

TP391.4

基金项目:

广东省重点领域研发计划项目(2019B020214003);岭南现代农业实验室科研项目(NT2021009);高等学校学科创新引智计划(D18019);“十四五”广东省农业科技创新十大主攻方向“揭榜挂帅”项目(2022SDZG03)


Single wood 3D reconstruction based on point cloud fusion of lidar and Kinect camera
Author:
  • PENG Xiaodong 1,2,3

    PENG Xiaodong

    College of Electronic Engineering(College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642,China;National Center for International;Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology,Guangzhou 510642,China;South China Smart Agriculture Public Research and Development Center of Ministry of Agriculture Rural Affairs,Guangzhou 510520,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HE Jing 1,2

    HE Jing

    College of Electronic Engineering(College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642,China;National Center for International;Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology,Guangzhou 510642,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SHI Lei 1,2

    SHI Lei

    College of Electronic Engineering(College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642,China;National Center for International;Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology,Guangzhou 510642,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Wenfeng 1,3

    ZHAO Wenfeng

    College of Electronic Engineering(College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642,China;South China Smart Agriculture Public Research and Development Center of Ministry of Agriculture Rural Affairs,Guangzhou 510520,China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LAN Yubin 1,2

    LAN Yubin

    College of Electronic Engineering(College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642,China;National Center for International;Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology,Guangzhou 510642,China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.College of Electronic Engineering(College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642,China;2.National Center for International;Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology,Guangzhou 510642,China;3.South China Smart Agriculture Public Research and Development Center of Ministry of Agriculture Rural Affairs,Guangzhou 510520,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了更好地建立单木三维彩色模型,获得准确表型参数,提出了一种基于Kinect v2相机和激光雷达的单木点云信息融合检测方法。首先由激光雷达采集樱树单木所在区域的完整环境点云,生成点云地图;由Kinect相机采集樱树单木多视角点云得到完整的三维彩色点云;然后以激光雷达点云位置为基准,通过选取对应同名点的方式对2种点云进行初始配准,使点云之间具有良好的初始位置关系,再使用最近点迭代 (iterative closest point, ICP)算法对点云进行精配准;最后使用彩色点云对雷达点云进行点云着色融合处理,实现樱树单木的三维重建。结果显示:与只使用Kinect v2相机生成的樱树单木表型参数对比,融合后的樱树单木的株高、冠幅和胸径的平均相对误差分别降低了1.52、6.46和18.17个百分点。研究结果表明,Kinect v2深度彩色相机和激光雷达在单木三维重建上能实现优势互补,提升点云配准精度,同时,既能降低光照气候条件的影响,又能增加测量距离,单木表型参数更准确。

    Abstract:

    3D reconstruction of trees is of great significance in the fields of plant phenotyping, digital orchards, and forestry resource planning. Kinect and lidar, a depth color camera based on infrared active structured light, are commonly used 3D reconstruction devices. In order to better establish a 3D color model of a single tree of cherry trees and obtain accurate phenotypic parameters, a detection method based on Kinect camera and lidar point cloud information fusion of single tree is proposed in this paper. Firstly, the complete environmental point cloud of the area where the single cherry tree is located is collected by the lidar to generate a point cloud map. Secondly, the multi-view point cloud of the single cherry tree is collected by the Kinect camera to obtain a complete 3D color point cloud. Based on the lidar point cloud position, the two point clouds were initially registered by selecting corresponding points with the same name, so that there was a good initial position relationship between the point clouds. Then, the point clouds were accurately registered by using the iterative closest point (ICP) algorithm. Finally, the color point cloud is used to perform point cloud coloring and fusion processing on the radar point cloud to realize the 3D reconstruction of the single-tree cherry tree. Compared with the single-tree phenotype parameters of cherry trees generated only by the Kinect v2 camera, the average relative errors of plant height, crown width and diameter at breast height of the integrated cherry trees were reduced by 1.52, 6.46 and 18.17 percentage points, respectively. The experimental results show that the Kinect v2 depth color camera and lidar can achieve complementary advantages in the 3D reconstruction of a single tree, improve the registration accuracy of the point cloud, and at the same time, it can not only reduce the influence of light and climatic conditions, but also increase the measurement distance, and the phenotype of a single tree can be improved. parameters are more accurate. The single-tree 3D reconstruction method of this complementary fusion technology has a good application prospect, and can be applied to the occasions such as fruit tree phenotype and growth monitoring, etc., to provide technical support for the development of digital orchards.

    图1 试验场景Fig.1 Experimental scene
    图2 点云融合流程图Fig.2 Point cloud fusion flowchart
    图3 激光雷达扫描原理图Fig.3 Schematic diagram of lidar scanning
    图4 LeGO-LOAM建图流程Fig.4 LeGO-LOAM drawing process
    图5 传感器放置示意图Fig.5 Schematic diagram of sensor placement
    图6 Kinect相机采集的数据Fig.6 Data collected by the Kinect camera
    图7 Kinect彩色点云背景分割结果Fig.7 Kinect color point cloud background segmentation result
    图8 部分不同角度点云配准效果图Fig.8 Partial effect of point cloud registration from different angles
    图9 总体融合效果图Fig.9 Overall fusion effect diagram
    图10 点云平滑处理前后效果对比Fig.10 Comparison of the effect before and after point cloud smoothing
    图11 下采样处理前后对比Fig.11 Comparison before and after sampling
    图12 待配准点云Fig.12 Point cloud to be registered
    图13 融合位置对比图Fig.13 Comparison of fusion positions
    图14 点云融合结果Fig.14 Point cloud fusion results
    图15 不同数据精度比较Fig.15 Comparison of different data precisions
    图16 点云预处理过程图Fig.16 Point cloud pretreatment process diagram
    图17 参数计算示意图Fig.17 Schematic diagram of parameter calculation
    图18 单一Kinect点云数据和融合点云数据的结果对比Fig.18 Comparison of single Kinect point cloud data and fusion point cloud data
    参考文献
    相似文献
    引证文献
引用本文

彭孝东,何静,时磊,赵文锋,兰玉彬.基于激光雷达和Kinect相机点云融合的单木三维重建[J].华中农业大学学报,2023,42(2):224-232

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-27
  • 在线发布日期: 2023-03-31
文章二维码