基于BiSeNet的糖心苹果截面糖心特征提取方法
CSTR:
作者:
作者单位:

1.昆明理工大学机电工程学院,昆明 650500;2.红河学院工学院/云南省高校高原机械性能分析与优化省重点实验室,蒙自 661199

作者简介:

尹治棚,E-mail:1939408075@qq.com

通讯作者:

张文斌, E-mail: 190322507@qq.com

中图分类号:

TP391

基金项目:

国家自然科学基金项目(51769007);云南省地方本科高校基础研究联合专项重点项目(202001BA070001-002);兴滇英才支持计划项目(YNWR-QNBJ-2018-349);云南省地方高校联合专项面上项目(202001BA070001-015)


Method of extracting characteristics of watercore in cross section of watercore apple based on BiSeNet
Author:
Affiliation:

1.College of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China;2.College of Engineering,Honghe University/Yunnan Province Key Laboratory of Mechanical Performance Analysis and Optimization of Plateau, Mengzi 661199,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为解决因糖心苹果截面糖心特征分布不规则导致的种植过程中对糖心品质评估方法精度低、复杂等问题,以380个糖心苹果作为试验样本,基于BiSeNet模型对苹果糖心特征进行提取与占比计算,分别评估该方法在理论研究与实践研究两方面的多项性能指标,并与FCN、PPLiteSeg与DeepLabV3这3种网络模型进行对比。结果显示,BiSeNet无论是在训练时间还是训练准确度都优于其他3种网络模型,用时130 s,准确率98.36%,交并比85.1%。在实际占比计算中,平均占比计算误差为4.04%,低于其他3种模型,且无较大偏差值。结果表明,基于BiSeNet的糖心苹果截面糖心特征提取方法在提供具体糖心占比的同时,可为糖心苹果的糖心特征等无损检测提供更精确的评估方法和比对目标。

    Abstract:

    A method of extracting watercore feature and calculating proportion based on BiSeNet was proposed to solve the problems of low precision and complex methods of evaluating watercore quality during the planting process due to the irregular distribution of watercore characteristics in the cross section of watercore apple. Four models including BiSeNet, FCN, PPLiteSeg and DeepLabV3 were used to extract the watercore characteristics in the cross section of 380 watercore apple samples. Each evaluation index in theoretical research and practical research were calculated separately. The comprehensive evaluation and comparison was conducted. The results showed that BiSeNet was superior to the other three network models in both training time and training accuracy. It took 130 s, with the accuracy rate of 98.36% and the intersection and combination ratio of 85.1%. In the actual proportion calculation, the average proportion calculation error was 4.04%, lower than that of the other three models, and there was no large deviation. It is indicated that the method of extracting and calculating watercore characteristics in the cross section of watercore apple based on BiSeNet can provide more accurate methods of evaluation and comparison targets for nondestructive testing of watercore characteristics of watercore apples while providing specific proportion of watercore.

    表 1 理论研究结果Table 1 Theoretical research results table
    表 2 实际研究结果Table 2 Actual research results table
    图1 苹果横切面(A)和纵切面(B)示意图Fig.1 Apple horizontal(A) and vertical section(B) diagram
    图2 试验技术路线Fig.2 Experimental technical route
    图3 BiSeNet运算流程图Fig.3 BiSeNet operation flow
    图4 训练数-准确率对比Fig.4 Training number-accuracy comparison
    图5 训练数-损失值对比Fig.5 Training number-loss value comparison
    图6 训练数-MIoU评估Fig.6 Training number - MIoU assessment
    图7 苹果截面图与参考图Fig.7 Original and annotations
    图8 各模型分割示意图Fig.8 Each model segmentation diagram
    图9 相对误差图Fig.9 Relative error diagram
    图10 验证试验结果对比Fig.10 Comparison of experimental results
    参考文献
    相似文献
    引证文献
引用本文

尹治棚,张文斌,赵春林.基于BiSeNet的糖心苹果截面糖心特征提取方法[J].华中农业大学学报,2023,42(2):209-215

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-04
  • 在线发布日期: 2023-03-31
文章二维码