金针菇中免疫调节蛋白编码基因FIP-fve的功能
CSTR:
作者:
作者单位:

1.沈阳农业大学生物科学技术学院,沈阳110866;2.辽宁省林业科学研究院,沈阳110032

通讯作者:

林景卫,E-mail: 2009500003@syau.edu.cn

中图分类号:

S567.3+9

基金项目:

辽宁省教育厅科学研究基础项目(LSNQN202013)陈焕,E-mail:2507297357@qq.com


Native bio-function of FIP-fve towards Flammulina filiformis
Author:
Affiliation:

1.College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866,China;2.Liaoning Academy of Forestry Sciences,Shenyang 110032,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [20]
  • | | | |
  • 文章评论
    摘要:

    为探究FIP-fve基因在金针菇本体的生物学功能,构建了pCAMBIA1301-pGPD-FIP-fve超表达载体并将其转化至农杆菌LBA4404中,采用农杆菌介导的金针菇转化法,最终获得了FIP-fve基因超表达的金针菇;进行FIP-ve基因沉默(RNAi: FIP-fve)、FIP-fve超表达(pGPD: FIP-fve)和野生金针菇(CK)菌丝体培养和子实体栽培,并记录菌丝体和子实体时期的生物学性状。结果显示:pGPD: FIP-fve金针菇菌丝生长速度最快,CK金针菇次之,而RNAi: FIP-fve金针菇生长速度最为缓慢;子实体出菇栽培后,在子实体数量、菌柄长度、子实体产量和生物学效率方面,pGPD: FIP-fve金针菇都明显优于CK金针菇,而RNAi: FIP-fve金针菇的子实体生长状况最差。研究结果表明,FIP-fve基因能够促进金针菇菌丝体的生长,并对金针菇原基形成具有促进作用,最终影响金针菇的产量。

    Abstract:

    FIP-fve is a low molecular-mass protein identified from Flammulina filiformis, which has many biological activities including immunomodulation. Our previous studies found that FIP-fve had certain growth-promoting effect on F. filiformis mycelia. We constructed an over-expression vector pCAMBIA1301-pGPD-FIP-fve, and transformed it into Agrobacterium tumefaciens LBA4404 strain to study the native biological function of FIP-fve to F. filiformis. FIP-fve gene overexpressed F. filiformis was obtained via Agrobacterium transformation. By comparing the biological characteristics of FIP-fve gene-silent F. filiformis (RNAi:FIP-fve), FIP-fve gene-overexpressed F. filiformis (pGPD:FIP-fve) and wild F. filiformis (CK) in mycelium and fruiting body stages, we found that the growth speed of pGPD:FIP-fve was faster than that of CK, whereas the growth speed of RNAi:FIP-fve was the lowest. After cultivating the fruiting body, yield-related traits of pGPD:FIP-fve were significantly better than that of CK in terms of fruiting body numbers, stalk length, fruiting body yield and biological efficiency, and those traits of RNAi: FIP fve were the worst. It is indicated that FIP-fve significantly promote the growth of F. filiformis mycelia and affect the final yields of F. filiformis.

    表 3 野生型(CK)、FIP- fve过表达和沉默菌株的金针菇产量Table 3 The mushroom yield of wild-type (CK),FIP- fve overexpression and silent strains
    表 2 实时定量PCR引物序列Table 2 Primer sequence for q-RT PCR
    图1 担子菌门不同真菌的FIP序列比对Fig.1 FIP sequence alignment of different fungi in Basidiomycetes
    图2 FIP的系统发育进化树Fig.2 The phylogenic tree of FIP
    图3 表达载体的酶切检测Fig.3 Restriction analysis of expression vector
    图4 表达载体pCAMBIA1303-pGPD-FIP-fve 构建Fig.4 pCAMBIA 1303-pGPD-FIP-fve vector construction
    图5 金针菇转化子潮霉素基因PCR检测结果Fig.5 PCR results of hygromycin gene transformed from Flammulina filiformis
    图6 野生菌株、过表达菌株和沉默菌株中的FIP-fve的转录水平Fig.6 Transcription levels of FIP-fve in the wild,overexpressing and silent strains
    图7 FIP-fve正向调控金针菇的生长发育Fig.7 FIP-fve positively regulates the growth and development of Flammulina velutipes
    图8 FIP-fve过表达和沉默对菌丝体生长的影响Fig.8 Effect of FIP-fve overexpression and silent on mycelium growth
    表 1 常规PCR所用引物及序列Table 1 Primer sequences used for PCR amplification
    参考文献
    [1] AL-KHALIFA H.Immunological techniques in avian studies[J].World’s poultry science journal,2016,72(3):573-584.
    [2] MAHFUZ S,HE T F,MA J Y,et al.Mushroom (Flammulina velutipes) stem residue on growth performance,meat quality,antioxidant status and lipid metabolism of broilers[J].Italian journal of animal science,2020,19(1):803-812.
    [3] ADAMS S,CHE D S,JIANG H L,et al.Effects of pulverized oyster mushroom (Pleurotus ostreatus) on diarrhea incidence,growth performance,immunity,and microbial composition in piglets[J].Journal of the science of food and agriculture,2019,99(7):3616-3627.
    [4] GHIMIRE P S,JIN C.Genetics,molecular,and proteomics advances in filamentous fungi[J].Current microbiology,2017,74(10):1226-1236.
    [5] LI D D,TANG Y,LIN J,et al.Methods for genetic transformation of filamentous fungi[J].Microbial cell factories,2017,16(1):1-13.
    [6] LI Q Z, ZHENG Y Z ,ZHOU X W.Fungal immunomodulatory proteins:characteristic,potential antitumor activities and their molecular mechanisms[J].Drug discovery today,2019,24(1):307-314.
    [7] LI L D,MAO P W,SHAO K D,et al.Ganoderma proteins and their potential applications in cosmetics[J].Applied microbiology and biotechnology,2019,103(23):9239-9250.
    [8] EJIKE U C,CHAN C J,OKECHUKWU P N,et al.New advances and potentials of fungal immunomodulatory proteins for therapeutic purposes[J].Critical reviews in biotechnology,2020,40(8):1172-1190.
    [9] KO J L,HSU C I,LIN R H,et al.A new fungal immunomodulatory protein,FIP-fve isolated from the edible mushroom,Flammulina velutipes and its complete amino acid sequence[J].European journal of biochemistry,1995,228(2):244-249.
    [10] LEE Y T, WU C T, SUN H L,et al..Fungal immunomodulatory protein-fve could modulate airway remodel through by affect IL17 cytokine[J].Journal of microbiology,immunology and infection,2018,51(5):598-607.
    [11] 张昕,夏雪,段作文,等.FIP-fve基因沉默载体构建和金针菇的遗传转化[J].分子植物育种,2017,15(11):4491-4497.ZHANG X,XIA X,DUAN Z W,et al.Construction of silencing vector for FIP-fve gene and genetic transformation of enoki mushroom(Flammulina velutipes)[J].Molecular plant breeding,2017,15(11):4491-4497 (in Chinese with English abstract).
    [12] ZHOU J S,BAI Y,DAI R J,et al.Improved polysaccharide production by homologous co-overexpression of phosphoglucomutase and UDP glucose pyrophosphorylase genes in the mushroom Coprinopsis cinerea[J].Journal of agricultural and food chemistry,2018,66(18):4702-4709.
    [13] MICHIELSE C B,HOOYKAAS P J J,VAN DEN HONDEL C A M J J,et al.Agrobacterium-mediated transformation as a tool for functional genomics in fungi[J].Current genetics,2005,48(1):1-17.
    [14] 黄亚丽,潘玮,蒋细良,等.根癌农杆菌介导丝状真菌遗传转化的研究进展[J].生物技术通报,2007(3):111-114.HUANG Y L,PAN W,JIANG X L,et al.Transformation in filamentous fungi mediated by Agrobacterium tumefaciens[J].Biotechnology bulletin,2007(3):111-114 (in Chinese with English abstract).
    [15] KIM S,HA B S,RO H S.Current technologies and related issues for mushroom transformation[J].Mycobiology,2015,43(1):1-8.
    [16] CHENG M,LOWE B A,SPENCER T M,et al.Factors influencing Agrobacterium-mediated transformation of monocotyledonous species[J].In vitro cellular & developmental biology-plant,2004,40(1):31-45.
    [17] 张磊,仝宗军,严俊杰,等.金针菇小G蛋白Ran的序列特征与表达分析[J].食用菌学报,2018,25(1):13-19,127.ZHANG L,TONG Z J,YAN J J,et al.Characterization and expression analysis of a FvRan1 gene from Flammulina velutipes[J].Acta edulis fungi,2018,25(1):13-19,127 (in Chinese with English abstract).
    [18] 仝宗军,严俊杰,张磊,等.金针菇转运蛋白基因fv-mfs1的序列与表达分析[J].食用菌学报,2017,24(3):1-6,107.TONG Z J,YAN J J,ZHANG L,et al.Sequence and expression analysis of transporter protein gene fv-mfs1 in Flammulina velutipes[J].Acta edulis fungi,2017,24(3):1-6,107 (in Chinese with English abstract).
    [19] WU T J,HU C C,XIE B G,et al.A single transcription factor (PDD1) determines development and yield of winter mushroom (Flammulina velutipes)[J/OL].Applied and environmental microbiology,2019,85(24):e01735-19[2022-08-03].https://doi.org/10.1128/AEM.01735-19.
    [20] WU T J,ZHANG Z Y,HU C C,et al.A WD40 protein encoding gene Fvcpc2 positively regulates mushroom development and yield in Flammulina velutipes[J/OL].Frontiers in microbiology,2020,11:498[2022-08-03].https://doi.org/10.3389/fmicb.2020.00498.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈焕,范天宁,白玉东,郭芡芡,王浩安,陈罡,高英旭,林景卫.金针菇中免疫调节蛋白编码基因FIP-fve的功能[J].华中农业大学学报,2023,42(2):131-138

复制
分享
文章指标
  • 点击次数:663
  • 下载次数: 1114
  • HTML阅读次数: 175
  • 引用次数: 0
历史
  • 收稿日期:2022-08-03
  • 在线发布日期: 2023-03-31
文章二维码