石金钱龟板来源的寡肽与环氧合酶-2相互作用机制
CSTR:
作者:
作者单位:

华中农业大学食品科学技术学院/环境食品学教育部重点实验室,武汉 430070

作者简介:

闫佳兴,E-mail:1813425989@qq.com

通讯作者:

张久亮,E-mail:zjl_ljz@mail.hzau.edu.cn

中图分类号:

TS201.2

基金项目:

国家重点研发计划项目(2021YFE0194000)


Interaction mechanism between oligopeptides from yellow pond turtle and cyclooxygenase-2 based on fluorescence spectroscopy and molecular docking
Author:
Affiliation:

College of Food Science and Technology, Huazhong Agricultural University/ Key Laboratory of Environment Correlative Dietology,Ministry of Education, Wuhan 430070, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究石金钱龟板来源的寡肽KNGP能否作为COX-2(环氧合酶-2)的新型抑制剂,通过紫外分光光度法测定石金钱龟板肽YPTP、合成肽段KNGP和RG的IC50值,利用内源荧光、同步荧光、三维荧光光谱和ANS(1-苯胺基-8-萘磺酸)荧光探针法分析KNGP对COX-2的疏水性影响,利用分子对接方法分析KNGP与COX-2间的相互作用方式。结果显示,YPTP、KNGP和RG的IC50值分别为0.609、0.046和0.056 mg/mL,KNGP的IC50值低于阳性药布洛芬(IC50=0.217 mg/mL),说明KNGP对COX-2具有显著的抑制潜力。内源荧光结果显示KNGP对COX-2的作用为静态猝灭且有单一作用位点,同时热力学参数计算结果显示,KNGP和COX-2的结合过程中疏水作用是主要驱动力,且KNGP和COX-2结合的是由熵驱动的自发过程。同步荧光、三维荧光光谱和荧光探针结果显示COX-2中的酪氨酸与色氨酸的疏水环境发生变化,且其表面的疏水性减弱。KNGP与COX-2的分子对接显示,KNGP分子主要通过NH基团、C=O结构、吲哚和咪唑结构与COX-2活性中心的氨基酸残基形成氢键和疏水相互作用,并通过形成静电作用增强结合的稳定性。以上结果表明, KNGP能与COX-2的单一位点通过氢键和疏水相互作用结合形成复合物,并改变酶的二级结构来抑制其活性。

    Abstract:

    This study aimed to reveal the mechanism of action of oligopeptides KNGP on cyclooxygenase-2 (COX-2), and to explore the interaction between KNGP from yellow pond turtle peptides (YPTP) and COX-2.The IC50 values of YPTP, synthesized KNGP and RG were determined by UV spectrophotometry.The mechanism of interaction between KNGP and COX-2 was investigated by intrinsic fluorescence, synchronous fluorescence, three-dimensional fluorescence spectroscopic techniques and ANS fluorescence probe.The mode of action between KNGP and COX-2 was studied by molecular docking.The results showed that the IC50 values of YPTP, KNGP and RG were 0.609, 0.046 and 0.056 mg/mL, respectively.The IC50 of KNGP was lower than that of the positive drug ibuprofen (IC50=0.217 mg/mL), indicating that KNGP had a significant inhibitory effect on COX-2 enzyme.The intrinsic fluorescence results showed that KNGP had a static quenching effect on COX-2, and the action site was single.Meanwhile, the results of thermodynamic parameter calculations showed that hydrophobic interaction is the main driving force in the process of KNGP binding to COX-2, and KNGP binding to COX-2 is a spontaneous process driven by entropy.The results of synchronous fluorescence, three-dimensional fluorescence spectroscopic and ANS fluorescence probe showed that the hydrophobic environment of tyrosine and tryptophan in COX-2 changed, and the hydrophobicity of COX-2 surface was weakened.The molecular docking between KNGP and COX-2 showed that KNGP molecules formed hydrogen bonds and hydrophobic interactions with the amino acid residues of COX-2 active center mainly through NH, C=O structure, indole and imidazole structure, and enhanced the binding stability by forming electrostatic interaction.Therefore, the results showed that KNGP could form a complex with COX-2 at a single site through hydrogen bonding and hydrophobic interaction, and change the secondary structure of the enzyme to inhibit its activity.

    表 4 KNGP、阳性对照(布洛芬和对乙酰氨基酚)与COX-2的对接打分结果Table 4 Results of molecular docking between KNGP, positive controls (ibuprofen and acetaminophen) and COX-2
    表 1 不同温度下KNGP对COX-2的猝灭常数Table 1 Quenching constants of KNGP on COX-2 at three temperatures
    表 2 不同温度KNGP对COX-2的结合常数和结合位点数Table 2 Binding constant and binding number of KNGP on COX-2 at three temperatures
    图1 石金钱龟龟板肽YPTP(A)、合成肽段KNGP(B)、RG(C)和布洛芬(D)对COX-2的抑制率Fig.1 Inhibitory rates of YPTP (A), KNGP (B), RG (C) and ibuprofen (D) on COX-2
    图2 COX-2与不同浓度的KNGP在298 K下的内源荧光光谱Fig.2 Intrinsic fluorescence spectra of COX-2 with KNGP at 298 K
    图3 COX-2与KNGP在298、304和310 K下的Stern-Volmer猝灭曲线Fig.3 Stern-Volmer plots for the quenching of COX-2 with KNGP at 298 K, 304 K and 310 K
    图4 KNGP与COX-2的双对数回归曲线Fig.4 The plots for calculating the binding constants and the number of binding sites of KNGP to COX-2
    图5 KNGP对COX-2的同步荧光光谱Fig.5 Synchronous fluorescence spectra of COX-2 with KNGP
    图6 KNGP对COX-2的RSFQ曲线Fig.6 The corresponding plot of RSFQ of COX-2 with KNGP
    图7 COX-2(A)三维荧光等高线图和在KNGP(0.47 mmol/L) 时COX-2(B)三维荧光等高线图Fig.7 Three-dimensional fluorescence spectra of COX-2 in absence (A) and presence of KNGP (0.47 mmol/L, B)
    图8 KNGP对COX-2的ANS荧光光谱Fig.8 ANS-fluorescence spectra of COX-2 with KNGP
    图9 KNGP与COX-2分子对接ROC曲线(A)及ROC的曲线下面积(B)Fig.9 ROC curves (A) and AUC of ROC curve (B) of docking between KNGP and COX-2
    图10 KNGP与COX-2对接的活性位点和特定氨基酸残基的3D(A)和2D(B)对接结果图Fig.10 3D (A) and 2D (B) docking mode of KNGP to the active site and specific amino acid residues of COX-2
    表 3 不同温度KNGP对COX-2的热力学参数Table 3 Thermodynamic parameters of KNGP on COX-2 at three temperatures
    参考文献
    [1] SINGH P,KAUR S,KUMARI P,et al.Tailoring the substitution pattern on 1,3,5-triazine for targeting cyclooxygenase-2:discovery and structure-activity relationship of triazine-4-aminophenylmorpholin-3-one hybrids that reverse algesia and inflammation in Swiss albino mice[J].Journal of medicinal chemistry,2018,61(17):7929-7941.
    [2] BINDU S,MAZUMDER S,BANDYOPADHYAY U.Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage:a current perspective[J/OL].Biochemical pharmacology,2020,180:114147 [2022-05-08].https://doi.org/10.1016/j.bcp.2020.114147.
    [3] 杨鹰,孙茹,曹艳花.选择性环氧化酶-2抑制剂对心血管影响的研究进展[J].药学研究,2016,35(1):41-45.YANG Y,SUN R,CAO Y H.Research progress on the effect of selective COX-2 inhibitors on cardiovascular diseases[J].Journal of pharmaceutical research,2016,35(1):41-45(in Chinese with English abstract).
    [4] CHENG Y Y,CHEN T Y,YU P H,et al.Observations on the female reproductive cycles of captive Asian yellow pond turtles (Mauremys mutica) with radiography and ultrasonography[J].Zoo biology,2010,29(1):50-58.
    [5] LIU L L.Studies on bioactive peptide from Chinese soft-shelled turtle (Pelodiscus sinensis) with functionalities of ACE inhibition and antioxidation[J].African journal of biotechnology,2012,11(25):6723-6729.
    [6] CHIU L H,HSU G S W,LU Y F.Antihypertensive capacity of defatted soft-shelled turtle powder after hydrolysis by gastrointestinal enzymes[J].Journal of food biochemistry,2006,30(5):589-603.
    [7] 蒋爽.ACE抑制肽的设计与抗酶解,抑制机理的研究[D].无锡:江南大学,2014.JIANG S.Study on the design,enzyme-resistant activity and inhibition mechanism of ACE inhibitory peptides[D].Wuxi:Jiangnan University,2014(in Chinese with English abstract).
    [8] GARDNER M L.Absorption of intact peptides:studies on transport of protein digests and dipeptides across rat small intestine in vitro[J].Quarterly journal of experimental physiology (Cambridge,England),1982,67(4):629-637.
    [9] 郭文博,徐冰,刘一蔓,等.中药:天然生物活性寡肽之库[J].中草药,2019,50(18):4477-4484.GUO W B,XU B,LIU Y M,et al.Chinese materia medica:a natural bioactive oligopeptides bank[J].Chinese traditional and herbal drugs,2019,50(18):4477-4484(in Chinese with English abstract).
    [10] LV Y B,ZHOU Q,FAN Y,et al.Intervention on immunodeficiency mice and structural identification of enzymatic peptides from Mauremys mutica and Cuora trifasciata[J/OL].Journal of ethnopharmacology,2019,241:111920 [2022-05-08].http://dx.doi.org/10.1016/j.jep.2019.111920.
    [11] YIN J J,ZHOU Q,WANG L,et al.Protective effect of extract of Mauremys mutica against cyclophosphamide (CY)-induced suppression of immune function in mice[J].Food and agricultural immunology,2016,27(4):577-588.
    [12] SHANG J H,CAI X H,FENG T,et al.Pharmacological evaluation of Alstonia scholaris:anti-inflammatory and analgesic effects[J].Journal of ethnopharmacology,2010,129(2):174-181.
    [13] 曹艳花,李靖,吕鹏月,等.维他昔布的抗炎镇痛作用研究[J].中国药学杂志,2013,48(20):1736-1739.CAO Y H,LI J,Lü PY,et al.The anti-inflammatory and the analgesic effects of vitacoxib,a new molecular entity[J].Chinese pharmaceutical journal,2013,48(20):1736-1739(in Chinese with English abstract).
    [14] YANG J,JING Z H,JIE J J,et al.Fluorescence spectroscopy study on the interaction between gossypol and bovine serum albumin[J].Journal of molecular structure,2009,920(1/2/3):227-230.
    [15] CHENG F Q,WANG Y P,LI Z P,et al.Fluorescence study on the interaction of human serum albumin with bromsulphalein[J].Spectrochimica acta part A:molecular and biomolecular spectroscopy,2006,65(5):1144-1147.
    [16] GéRARD V,GALOPIN C,AY E,et al.Photostability of l-tryptophan in aqueous solution:effect of atmosphere and antioxidants addition[J/OL].Food chemistry,2021,359:129949 [2022-05-08].https://doi.org/10.1016/j.foodchem.2021.129949.
    [17] 张子程.紫薯花色苷干预尿酸代谢异常的分子机制研究[D].武汉:华中农业大学,2019.ZHANG Z C.Molecular mechanism of anthocyanins from purple sweet potato(Ipomoea batatas L.)in attenuating abnormal uric acid metabolism[D].Wuhan:Huazhong Agricultural University,2019(in Chinese with English abstract).
    [18] 侯利杰,张泽,申炳俊,等.分子对接和荧光光谱法研究保泰松与人血清白蛋白的相互作用及机制[J].长春理工大学学报(自然科学版),2021,44(6):131-137.HOU L J,ZHANG Z,SHEN B J,et al.Molecular docking and fluorescence spectroscopy were used to study the interaction and mechanism between bute and human serum albumin[J].Journal of Changchun University of Science and Technology (natural science edition),2021,44(6):131-137(in Chinese with English abstract).
    [19] ZHANG L J,WANG Z C,REN T,et al.Investigation of the interaction between FTO and 3-substituted 2-aminochromones by spectroscopy and molecular modeling[J].Medicinal chemistry research,2017,26(7):1349-1358.
    [20] ZHENG Y X,TIAN J H,YANG W H,et al.Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase[J/OL].Food chemistry,2020,317:126346 [2022-05-08].https://doi.org/10.1016/j.foodchem.2020.126346.
    [21] LI X,ZHANG S,CUI X,et al.Multi-spectroscopic characterization of anaesthetic parecoxib upon interaction with cyclooxygenase-2 in vitro biophysical studies [J].Latin American journal of pharmacy, 2017, 36(4):686-693.
    [22] 陈彦,尹宗宁.新型芳基异丙酸类化合物与牛血清白蛋白的相互作用[J].华西药学杂志,2015,30(4):436-439.CHEN Y,YIN Z N.Interaction between a novel aryl isopropyl acids and bovine serum albumin[J].West China journal of pharmaceutical sciences,2015,30(4):436-439(in Chinese with English abstract).
    [23] PENG X,ZHANG G W,LIAO Y J,et al.Inhibitory kinetics and mechanism of kaempferol on α-glucosidase[J].Food chemistry,2016,190:207-215.
    [24] 任钰婷,邱智军,张彬,等.活性蓝4与牛血清白蛋白的相互作用研究[J].河南科技大学学报(自然科学版),2020,41(6):93-99.REN Y T,QIU Z J,ZHANG B,et al.Study of interaction between reactive blue 4 and bovine serum albumin[J].Journal of Henan University of Science and Technology (natural science),2020,41(6):93-99(in Chinese with English abstract).
    [25] YANG Y,ZHANG J L,SHEN L H,et al.Inhibition mechanism of diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) against α-amylase and α-glucosidase[J/OL].Food chemistry,2021,359:129934 [2022-05-08].https://doi.org/10.1016/j.foodchem.2021.129934.
    [26] TANG H J,MA F,ZHAO D S,et al.Exploring the effect of salvianolic acid C on α-glucosidase:inhibition kinetics,interaction mechanism and molecular modelling methods[J].Process biochemistry,2019,78:178-188.
    [27] 杨扬.紫薯花色苷干预淀粉消化与改善高果糖高脂诱导代谢综合征的机制研究[D].武汉:华中农业大学,2021.YANG Y.Mechanism of anthocyanins from purple sweet potato in slowing starch digestion and alleviating high-fructose/high-fat induced metabolic syndrome[D].Wuhan:Huazhong Agricultural University,2021(in Chinese with English abstract).
    [28] 张爱芹,王嫚,申刚义,等.多溴联苯醚与人血清白蛋白相互作用的表面等离子体共振及分子对接[J].高等学校化学学报,2020,41(9):2054-2060.ZHANG A Q,WANG M,SHEN G Y,et al.Interactions between polybrominated diphenyl ethers and human serum albumin using SPR and molecular docking[J].Chemical journal of Chinese universities,2020,41(9):2054-2060(in Chinese with English abstract).
    [29] 王帅.基于TGFβⅠ型受体抑制剂药效团的构建、虚拟筛选和打分功能的评估[D].重庆:重庆医科大学,2021.WANG S.Construction,virtual screening and evaluation of scoring function of pharmacophore based on TGFβⅠ receptor inhibitor[D].Chongqing:Chongqing Medical University,2021(in Chinese with English abstract).
    [30] 席尧.计算机辅助环氧合酶抑制剂的结构-活性关系研究[D].北京:北京化工大学,2019.XI Y.Computer-aided of structure-activity relationships(SAR)study of cyclooxygenase(COX)inhibitors[D].Beijing:Beijing University of Chemical Technology,2019(in Chinese with English abstract).
    [31] BLOBAUM A L,MARNETT L J.Structural and functional basis of cyclooxygenase inhibition[J/OL].Journal of medicinal chemistry,2007,50(7):1425-1441[2022-05-08].https://doi.org/10.1021/jm0613166.
    [32] SISA M,DVORAKOVA M,TEMML V,et al.Synthesis,inhibitory activity and in silico docking of dual COX/5-LOX inhibitors with quinone and resorcinol core[J/OL].European journal of medicinal chemistry,2020,204:112620[2022-05-08].https://doi.org/10.1016/j.ejmech.2020.112620.
    [33] 孙艳涛,张玉璞,毕淑云,等.牛血清白蛋白与保泰松和布洛芬相互作用的荧光光谱研究[J].高等学校化学学报,2009,30(6):1095-1100.SUN Y T,ZHANG Y P,BI S Y,et al.Studies on the interaction for bovine serum albumin with phenylbutazone and ibuprofen by fluorescence spectrometry[J].Chemical journal of Chinese universities,2009,30(6):1095-1100(in Chinese with English abstract).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

闫佳兴,张久亮.石金钱龟板来源的寡肽与环氧合酶-2相互作用机制[J].华中农业大学学报,2022,41(5):169-178

复制
分享
文章指标
  • 点击次数:772
  • 下载次数: 1100
  • HTML阅读次数: 115
  • 引用次数: 0
历史
  • 收稿日期:2022-05-08
  • 在线发布日期: 2022-10-11
文章二维码