基于拟人驾驶模型的联合收获机导航控制器设计与试验
CSTR:
作者:
作者单位:

华中农业大学工学院/农业农村部长江中下游农业装备重点实验室,武汉430070

作者简介:

胡子谦,E-mail: 563820599@qq.com

通讯作者:

丁幼春,E-mail: kingbug163@163.com

中图分类号:

TP273

基金项目:

国家重点研发计划项目(2021YFD2000402;2021YFD2000402-3);湖北省重点研发计划项目(2021BBA080)


Design and test of navigation controller for combine harvester based on humanoid driving model
Author:
Affiliation:

College of Engineering,Huazhong Agricultural University/Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River,Ministry of Agriculture and Rural Affairs,Wuhan 430070,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了解决轮式联合收获机在水稻收获作业中操作繁琐及作业质量和效率低的问题,通过采集熟练驾驶员驾驶时收获机位姿信息和驾驶员操作信息,运用神经网络构建了拟人驾驶模型并设计了一种基于拟人驾驶模型的联合收获机导航控制器。根据收获作业需求设计了一种田间套行作业路径规划方法,在保证转弯精度的同时,较好的完成收获作业;与传统PID和常规纯追踪模型相比,拟人驾驶模型控制收敛速度快0.42 s、超调减小4.0 cm,具有收敛速度快、超调小等特点。路面直角路线转向试验结果表明,当联合收获机行驶速度分别为0.62、0.82、1.02 m/s时,转弯后超调量不大于3.93 cm,在不同行驶速度下仍具有较高的鲁棒性。田间试验结果表明,联合收获机在水稻田中以0.6、0.8、1.0 m/s的速度前进时,直角转向导航跟踪转向后超调量分别不大于8.1、8.9、9.6 cm,直线跟踪部分平均绝对偏差分别不大于3.1、3.0、3.3 cm。试验结果表明,所设计的拟人驾驶模型导航控制器能较好地完成水稻收获作业自动导航。

    Abstract:

    A humanoid driving model was established by collecting the harvester position information and driver operation information from skilled drivers. A navigation controller based on the humanoid driving model was designed by using neural networks to solve the problems of tedious operation,low operation quality and low efficiency of wheeled combine harvester in rice harvesting operation. According to the requirements of harvesting operation,a control method of field set row operation was designed,which can better complete the harvesting operation while ensuring the turning accuracy. Compared with the conventional PID and conventional pure tracking model,the humanoid driving model control converges 0.42 s faster and the overshoot is reduced 4.0 cm,which has the characteristics of fast convergence and small overshoot. The results of road right-angle route steering test showed that when the driving speed was 0.62 m/s,0.82 m/s and 1.02 m/s,the overshoot after the turn was no more than 3.93 cm,and it still had high robustness under different driving speeds. The results of field test showed that the right-angle steering navigation tracking post-turn overshoot was no more than 8.1 cm,8.9 cm,9.6 cm. The average absolute deviation of the linear tracking part was no more than 3.1 cm,3.0 cm,3.3 cm in the rice field at the forward speed of 0.6,0.8,1.0 m/s. It is indicated that the designed navigation controller based on the humanoid driving model established can better complete the automatic navigation of rice harvesting operation,and provide technical support for unmanned harvesting of rice production.

    表 2 拟人驾驶模型训练样本数据Table 2 Training sample data sheet for anthropomorphic driving model
    表 1 联合收获机技术指标参数Table 1 Technical parameters of combine harvester
    图1 联合收获机自动导航作业系统组成Fig.1 Combine harvester automatic navigation operation system composition
    图2 控制系统总体结构图Fig.2 Overall structure of the control system
    图3 套行作业导航路径规划图Fig.3 Navigational path planning map for set operations
    图4 导航系统结构图Fig.4 Navigation controller system structure diagram
    图5 转向执行控制器结构图Fig.5 Structure diagram of steering control system
    图6 神经网络训练结果分析Fig.6 Analysis of neural network training results
    图7 神经元节点权值、增益、偏置项参数Fig.7 Manual driving data collection site
    图8 PID控制器、常规纯追踪控制器和拟人驾驶模型控制器对比Fig.8 Comparison of PID controller,conventional pure tracking controller and anthropomorphic driving model controller
    图9 纯追踪转向运动模型Fig.9 Pre-sighted pure tracking motion model
    图10 田间作业导航试验结果Fig.10 Field navigation trial in set row operation
    表 3 不同速度直角转向路面试验Table 3 Road test data at different speeds
    表 4 拟人驾驶模型导航控制器田间试验效果Table 4 Experimental effect of anthropomorphic driving model navigation controller
    参考文献
    引证文献
引用本文

胡子谦,王登辉,胡瑞,董万静,丁幼春.基于拟人驾驶模型的联合收获机导航控制器设计与试验[J].华中农业大学学报,2022,41(4):248-258

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-02-17
  • 在线发布日期: 2022-10-12
文章二维码