吴蔚,樊啟洲,易宝军,等.Ni-Mg/RHA 催化剂催化水蒸气焦油模型化合物重整反应研究[J].华中农业大学学报,2021,40(1):218-226. DOI:10.13300/j.cnki.hnlkxb.2021.01.027

Ni-Mg/RHA 催化剂催化水蒸气焦油模型化合物 重整反应研究

吴蔚,樊啟洲,易宝军,刘弼臣

华中农业大学工学院,武汉 430070

摘要 以甲苯为生物质焦油模型化合物,以生物质燃烧产物稻壳灰为载体,采用共浸渍法制备 Ni-Mg/ RHA 催化剂,研究 Ni-Mg/RHA 催化剂对甲苯水蒸气催化重整的性能。在固定床反应装置中考察了 Ni 和 Mg 的负载量、反应温度和水/碳(水和碳的质量比,简称为水/碳或 S/C)对甲苯转化率和气体产物组分的影响,采用 XRD、BET、SEM 等方法对反应前后催化剂进行表征分析。结果显示,稻壳灰(rice husk ash,RHA)作为单金属 Ni 基催化剂的载体具有一定的催化活性;负载 MgO 后,MgO 改善了 Ni/RHA 催化剂中活性金属 Ni 的分散度, 与 NiO 相互结合形成 NiMgO 固溶体活性中心,显著提升了 Ni/RHA 催化剂的催化活性和抗积炭能力,Mg 负 载为 6%时性能最佳,甲苯转化率高达 98.6%;3Ni-6Mg/RHA 催化剂的最佳反应温度为 700 ℃,S/C 为 3,具有 良好催化稳定性。研究结果表明,在 MgO 存在的情况下,稻壳灰可作为镍基催化剂载体。

关键词 焦油模型化合物;水蒸气重整;镍基催化剂;生物质气化;助剂;稻壳灰;生物质能
 中图分类号 TK 6 文献标识码 A 文章编号 1000-2421(2021)01-0218-09

生物质气化是转化生物质能的重要技术之一, 但是副产物焦油的存在严重制约了气化技术的发 展^[1-2]。焦油的去除成为生物质气化技术面临的巨 大挑战^[3]。蒸汽重整被认为是将焦油转化为 H₂和 CO 的潜在技术^[4]。开发制备简单、价格低廉、高活 性和高稳定性的蒸汽重整催化剂是解决该问题的关 键措施之一^[5]。研究表明,镍基催化剂对焦油蒸汽 催化重整反应有较高的活性^[6-7]。在负载型金属(如 Ni、Co、Fe、Pt、Pd等)催化剂中,相比负载贵金属和 其他过渡金属催化剂,Ni基催化剂展现出良好的活 性/成本比^[8]。但是一般单金属 Ni 基催化剂容易形 成积炭导致失活,需要对其进行改性^[9]。通常将 Ni 基催化剂负载于载体上可以改善催化剂的活性。

研究发现,富含二氧化硅的稻壳灰(rice husk ash,RHA)可直接用作去除生物热转化产生的焦油的催化剂或载体^[10]。Shen 等^[11]研究了原位生物质 热解稻壳炭和炭载镍铁催化剂对焦油的干法重整, 煅烧后 Ni/炭(C-SiO₂)对可凝性焦油的转化效率可 达到 93%,RHA 上表面矿物对焦油转化也起到催 化作用。此外,在二氧化硅载体上负载镍、铁、铜等

过渡金属来增强催化活性。Blanco 等^[12]研究了一 系列 Ni/SiO₂ 催化剂在两级热重整系统中制氢和 焦油还原方面的适用性,结果表明通过溶胶-凝胶法 制备的 Ni/SiO₂ 催化剂表现出最佳的性能。这些 研究表明,RHA 作为镍基催化剂的载体在焦油催 化中的潜力巨大。

碱性金属氧化物添加到 Ni 基催化剂可以改善 催化剂的积炭性能。Chen 等^[13]研究了 HZSM-5 负 载的 Ni-MgO 催化剂对生物质焦油的催化裂解性 能,发现 Ni-MgO/HZSM-5 相比 Ni/HZSM-5 催化 剂,在生物质焦油催化裂解中表现出最高的催化活 性和最低的焦炭沉积率。Ahmed 等^[14]考察了以甲 苯为焦油模型化合物的 Ni/zeolite、Ni-Fe/zeolite、 Ni-Fe-Mg/zeolite 催化剂的蒸汽重整性能,发现 Mg 可使镍铁合金形成更多的碱性催化位点,增强活化 CO₂的能力,提高了催化剂碳沉积的耐受性。因此, 碱金属中的 MgO 添加到镍基催化剂中,可以改善 催化剂的积炭性能。

在改性镍基催化剂中,金属 Ni 的负载量不仅影响着镍基催化剂的活性也制约着制备成本。目前有

收稿日期:2020-05-22

基金项目:公益性行业(农业)科研专项(201503135-11)

吴蔚,E-mail: wuw94@webmail.hzau.edu.cn

通信作者:樊啟洲,E-mail: qizhoufan@mail.hzau.edu.cn

关镍基催化剂处理焦油的研究,鲜见以稻壳灰 (RHA)负载 Ni-Mg 活性组分的催化剂对生物质焦 油水蒸气重整的报道。本研究选用稻壳灰(RHA) 为 Ni 基载体、MgO 为助催化剂、甲苯为焦油模型化 合物,研究 Ni 和 MgO 的负载量、反应温度、S/C(水 和碳的质量比,简称为水/碳,下同)和体积空速对甲 苯转化率、气体组分和催化剂积炭的影响,旨在考察 Mg 作为 Ni/RHA 催化剂助剂的作用机制,进一步 提高 Ni/RHA 催化剂的经济性和抗积炭性能。

1 材料与方法

1.1 试剂及仪器

1)试剂。生物质材料,稻壳(rice husk,RH);分子筛,HZSM-5,天津南开催化剂有限公司;甲苯、硝酸镍、硝酸镁,均为分析纯,国药集团化学试剂有限公司;实验用水均为去离子水。

2)仪器。马弗炉,XL-1,鹤壁科达有限公司;管 式电阻炉,SK-13,北京光明仪器有限公司;质量流 量控制器,0-10SLM,北京七星华创电子股份有限责 任公司;注射泵,LSP02-1B,兰格恒流泵有限公司; 蠕动泵,BT100M,保定创锐仪器有限公司;高纯氢 气发生器,SPH-500A,北京中惠普分析技术研究 院;烟气分析仪,Gasboard-3000,武汉四方科技有限 公司;X-射线粉末衍射仪,D8Advance,德国Bruker 公司;比表面及孔径分析仪,ASAP2020,美国Micromeritics公司;TA同步热分析仪,SDTQ600,美 国TA公司。

1.2 催化剂的制备

1) Ni-Mg/RH 制备。稻壳(RH)置于烘箱中 36~48 h 干燥,去除稻壳中的水分后,将 RH 研磨 至粒径为 100~200 μ m。称取一定量的 RH 浸渍于 Ni(NO₃)₂ • 6H₂O 和 Mg(NO₃)₂ • 6H₂O 混合水 溶液中,浸渍搅拌 4 h,超声震荡 2 h。超声后的混 合溶液持续搅拌,磁力搅拌器升温至 80 ℃,直至混 合液中水分完全蒸发。

2)Ni-Mg/RHA 制备。将所得 RH 负载活性金 属 Ni-Mg 样品放置于 105 ℃烘箱中干燥 12 h,干燥 后的催化剂置于马弗炉中,以 10 ℃/min 的升温速 度升高至 600 ℃,煅烧 3 h,得到 Ni-Mg/RHA 催化 剂。在活性测试之前,将制备的催化剂材料在 600 ℃的 H₂气流中还原 3 h。

1.3 催化性能评价

甲苯的蒸汽重整反应在固定床管式流动反应器 中进行,该反应器置于管式炉中,如图1所示。石英

反应器的内径为 20 mm。催化剂两端用石英棉支 撑,称取 0.5 g 催化剂加载至石英反应管中心。反 应器的温度由温度控制器控制,催化反应温度为 600~800 ℃。催化系统载气为 N₂。分别使用注射 泵和蠕动泵将甲苯和水(进料速度分别为 0.033、 0.04~0.16 mL/min)的混合液注射到蒸发器中,蒸 发器的温度为150℃,在此将反应物与N₂混合。由 质量流量计控制 N₂以 30 mL/min 的流速携带至反 应器中,气体时空速度(GHSV)约为3 600 mL/(g•h)。参考文献[15],本研究的甲苯催化重 整反应选择为 2 h。反应产物通过水浴冷凝后回 收,用湿式流量计测量产物气体体积,用气袋收集反 应产生气体。通过烟气分析仪检测产物气体分布和 组分。反应 20 min 后将气体通入烟气分析仪分析, 计算出产气的平均值。甲苯的碳转化率采用公式 (1)进行计算。

$$X = \frac{Q(V_{\rm CO} + V_{\rm CO_2} + V_{\rm CH_4})}{M \times N_{\rm C}} \tag{1}$$

式(1)中:X 为甲苯的碳转化率,Q 为气体总体 积,L; V_{co} 、 V_{Co_2} 、 V_{CH_4} 分别是气体产物中 CO、CO₂、 CH₄的体积分数,%;M 为气体的摩尔体积,22.4 L/mol; N_c 为甲苯中碳原子的物质的量,mol。

图 1 蒸汽重整装置示意图

2 结果与分析

2.1 Ni 和 Mg 负载量的影响

在固定床反应温度 700 ℃、S/C 为 3、反应时间 2 h 条件下考察不同 Ni、Mg 负载量(湿质量,以下全 文表示催化剂中金属或金属氧化物均为湿质量条件

下的质量分数)的 Ni/RHA、Ni-Mg/RHA 和对照组 3Ni/HZSM-5、3Ni-6Mg/HZSM-5 催化剂对甲苯蒸 汽重整甲苯转化率和产气量以及气体产物组分的影 响。如图 2A 所示,对于单金属 Ni/RHA 催化剂, 随着 Ni 的负载量增加,甲苯转化率先增大后减小。 当 Ni 的负载量为 3%时,甲苯转化率为 19.4%,产 气量为 16.5 L/g。与此同时,3Ni/HZSM-5 催化剂的 甲苯转化率为 39.4%,产气量为 26.2 L/g。3Ni/ RHA 催化活性略低于 3Ni/HZSM-5。由图 2B 可知,Ni/RHA 和 3Ni/HZSM-5 催化气体产物组分含量差异不大,说明 RHA 负载镍基催化剂接近了HZSM-5 负载的催化效果。一般来说,在 Ni 基催化剂中,催化剂载体在催化反应中起着重要的作用,载体为反应物提供吸附位点,并与活性金属相互作用得到新的相^[16]。Ni/RHA 和 Ni/HZSM-5 相比,表现出较差的催化活性,原因可能是RHA相比HZSM-5

Fig.2 Effect of Ni loadings on toluene conversion rate, gas production (A) and gas composition (B) 载体,没有发达的孔结构,为甲苯和水蒸气的反应提 MgO 负载量的增加,甲苯转化率先增加局

在单金属 Ni/RHA 催化剂中,6Ni/RHA 相比 于 3Ni/RHA 催化剂,活性金属负载量增加了 1 倍, 催化效果增加不明显,考虑到 Ni 基催化剂的制备成 本,在低 Ni 负载量条件下的改善更加具有经济性, 因此,选择通过添加 MgO 提升 3Ni/RHA 的催化性 能。由图 3A 可知,低负载金属 3Ni/RHA 储化剂 添加 MgO 后 其 催 化 活 性 显 著 提 升。 3Ni-3 Mg/RHA相比 3Ni/RHA,甲苯转化率从 19.3%增 加至 93.4%,产气量从 16.5 L/g 增加至 39.34 L/g, 这可能是由于 Ni 和 MgO 之间形成了(Ni、Mg)O 固溶体活性中心,提高了催化剂的活性^[17]。随着

供的场所不足,导致催化活性较差。

MgO负载量的增加,甲苯转化率先增加后减小。当 MgO负载量为6%时,甲苯转化率与产气量最高分 别达98.6%和41.8 L/g,MgO负载量进一步增加, 3Ni-9Mg/RHA甲苯转化率和产气量分别降低至 93%和40.3 L/g,可能是MgO的负载量过高,使催 化剂表面的晶体发生团聚或催化剂载体孔的堵塞, 导致催化活性降低。相同MgO负载量下, 3Ni-6Mg/HZSM-5催化剂的甲苯转化率为71.1%, 产气量为31.6 L/g,催化活性低于3Ni-6Mg/RHA 催化剂,这表明MgO的负载对Ni/RHA的促进作 用高于对Ni/HZSM-5催化剂。由图3B可知,气体产 物组分中随着MgO负载量的增加,H₂和CO₂的含量 分别从61.5%和13.1%逐渐增加至63.6%和16.2%,

Fig.3 Effect of Mg loadings on toluene conversion rate, gas production (A) and gas composition (B)

CO的含量从 24.7%逐渐下降为 20%,这表明 MgO 的添加促进了水煤气转化反应,提升了气体产物中 H₂和 CO₂的含量,增加了蒸汽重整反应性。需要说 明的是,图 2B 和图 3B 只是气体比例,绝对量的增 加是甲苯转化率增加产生的。

3Ni-3Mg/RHA、3Ni-6Mg/RHA、3Ni-9Mg/RHA 等催化剂催化重整甲苯水蒸气反应后的 Ni-Mg/RHA 催化剂的积炭率分别为 1.86%、1.78%、2.13%,表明 催化剂积炭率随着 Mg 负载量增加而先增加后减 少,当 Mg 含量为 6%时,3Ni-6Mg/RHA 催化剂表 面积炭仅为1.78%,表现出优良的抗积炭能力,这归 因于碱性的 Mg 增加催化剂吸附 CO, 的能力,并有 助于去除表面积炭。Luo等^[18]研究了纳米 Ni_Mg_O固溶体的开发,用于甲醇的蒸汽重整,发 现 Mg 的添加可以有效抑制焦炭沉积。当 Mg 负载 量低时,NiO和 MgO 接触少,形成 NiMgO 固溶体 活性中心相对较少,相互作用力小,形成 NiMgO 固 溶体活性中心相对较少,导致催化剂活性不足,未反 应的甲苯生成积炭易于附着在催化剂表面;当 Mg 负载量过高时,活性金属发生团聚,阻止了活性位点 与甲苯和水蒸气接触,导致催化活性下降,在催化剂 表面形成积炭。因此, 3Ni-6Mg/RHA 表现出最佳 的甲苯蒸汽重整催化性能。

2.2 反应温度的影响

图 4 为催化剂 3Ni-6Mg/RHA 在反应温度为 650~800 ℃、S/C 为 3 条件下的甲苯转化率和气体 组分。由图 4 中可知, 3Ni-6Mg/RHA 的催化活性 非常依赖反应温度,随着反应温度的升高,甲苯转化 率先增加后减少;在650℃时,甲苯的转化率为 82.5%,随着催化反应温度从 650 ℃升高至 700 ℃, 甲苯转化率显著升高,达到最大值(98.6%),继续升 高温度至 800 ℃,甲苯的转化率下降至 92.8%。由 于甲苯水蒸气催化重整反应中以吸热反应为主,反 应温度的升高提高了反应速率,加快了甲苯与水蒸 气的重整反应。800 ℃时 3Ni-6Mg/RHA 虽然保持 较高的催化活性,但相比 700 ℃条件下,甲苯的转化 率有所下降,原因是活性金属 Ni 颗粒在高温下发生 烧结,导致催化活性降低。当催化反应温度从 650 ℃升高至 700 ℃时,H,的含量从 61.2%上升至 62.8%, CO的含量从 24.1% 下降至 22%, 这归因 于温度升高促进了水煤气变化反应,导致 H,和 CO,含量上升。当反应温度从 700 ℃升高至 800 ℃,由于高温加速甲苯自身裂解反应分解成炭,

导致催化剂表面积炭,从而降低了催化活性。因此,3Ni-6Mg/RHA在低温下催化活性一般,高温 下具有良好的催化活性,最佳的反应温度为 700℃。

2.3 水和碳质量比的影响

图 5 为 3Ni-6Mg/RHA 催化剂在不同水和碳 质量比(S/C)下的甲苯转化率和气体产物组分,反 应温度为 700 °C。由图 5 可知,S/C 对 Ni-Mg-Ce/ HZSM-5 催化剂的催化活性有着显著影响。当 S/C 分别为 1、2、3、4 时,相应甲苯转化率分别为 34.1%、 85.5%、98.6%、94.7%。这是因为水蒸气和甲苯会 发生催化重整反应,促进 H₂和 CO 的生成,但 S/C 较高时,催化剂表面上水蒸气吸附饱和,减少了甲苯 与表面活性位点的接触,导致甲苯转化率降低。在 气体产物组分中可知,随着 S/C 的增加,H₂和 CO₂ 的含量逐渐增加,CO 和 CH₄ 的含量逐渐减少。当 S/C 为 1 时,H₂、CO、CO₂ 的含量分别为 58.1%、 34.8%和 5.18%,当 S/C 为 4 时,H₂、CO₂的含量分别 增加至64.9%和18.2%,而CO的含量减少至16.6%。

随着 S/C 的增加,水蒸气促进了甲苯蒸汽重整和水 煤气变化反应向生成 H₂和 CO₂的方向进行,从而 使得气体产物中 H₂和 CO₂ 含量上升,CO 的含量下 降。综合 甲苯转化率和气体产物组分的影响, 3Ni-6Mg/RHA催化剂对甲苯水蒸气重整的最佳 S/C为 3。

2.4 催化剂的稳定性

前文结果表明,3Ni-6Mg/RHA 催化剂在反应 温度 700 °C、S/C为3时表现出最佳的催化活性,甲 苯的转化率可达 98.6%,在此条件下进行催化剂的 稳定性试验(图 6)。随着反应时间的增加,甲苯的 转化率保持稳定,直至8h反应结束,甲苯的转化率 稳定维持在 90.4%以上,并且气体产物组成稳定, H_2 含量在 63.5%以上,这表明反应中没有生成导致 催化剂失活的积炭,3Ni-6Mg/RHA 催化剂对甲苯 蒸汽重整有着较高的催化活性和较强的稳定性。

由表1可知,本研究制备的3Ni-6Mg/RHA 催化剂对甲苯蒸汽重整具有良好的催化性能。 与高负载镍催化剂相比,MgO降低了镍的负载, 提高了催化活性。此外,MgO提高了催化剂的 抗结焦性。

表 1 甲苯蒸汽重整催化剂的催化活性和积炭率比较 Table 1 Comparison of catalytic activity and coking rate of toluene steam reforming catalyst

催化剂	反应条件	转化率/%	积炭率/%	参考文献
Catalyst	Reaction conditions	Conversion	Coking rate	References
3Ni-6Mg/RHA	S/C=3, T=973 K	92.8	1.78	本研究 This study
3Ni/Olivine	S/C = 3.5, T = 1063 K	59.0	4.50	[5]
$10 \operatorname{Ni} / \gamma \operatorname{-A}_2 \operatorname{O}_3$	S/C=1.6, T=923 K	51.0	0.10	[6]
$20 \mathrm{Ni}/\gamma - \mathrm{Al}_2 \mathrm{O}_3$	S/C=1.6, T=923 K	62.0	0.71	[6]
$30 \mathrm{Ni}/\gamma - \mathrm{Al}_2 \mathrm{O}_3$	S/C = 1.6, T = 923 K	99.0	1.21	[6]
$12 \mathrm{Ni}\text{-}15 \mathrm{Co}/\mathrm{Al}_2 \mathrm{O}_3$	S/C = 3.4, T = 923 K	100	0.38	[7]

2.5 晶体结构分析

由图 7A 可知,在 600 ℃的煅烧温度下制备的 RHA 没有发现明显的吸收峰,结晶度较低,这表明 RHA 的晶型结构在此煅烧温度下是非晶态的,其 中 RHA 主要成分为 SiO₂。研究表明,RHA 中的 二氧化硅在 550~800 ℃下会形成无定形二氧化硅, 以非晶状态存在^[19]。图 7A 中可观察到在 2θ 为 43.3°和 63.2°有 2 个特征峰,对应着 NiO 的特征峰。 由于 Ni²⁺的离子半径(0.070 mm)和 Mg²⁺(0.065 mm)近似,并且两者易形成固溶体^[20],因此,NiO、 MgO 和 NiO-MgO 固溶体衍射角度差别不大。2*θ* 为 43.0°和 62.5°有 2 个特征峰,对应着 MgO 的特征 峰; 2θ 为 43.3°和 63.7°有 2 个特征峰,对应着 NiMgO 固溶体的特征峰,可以看出 NiO、MgO和

A:未还原 Fresh; B:还原后 Reduced.

图 7 不同 RHA 负载催化剂的 XRD 图

Fig.7 XRD patterns of RHA-supported catalysts

NiO-MgO 固溶体衍射峰十分接近。

图 7B 是 RHA 负载催化剂还原后的 XRD 图 谱,对比图 7A 可知,还原前后各自的特征峰角度无 明显变化。在 2θ 为 43.3° 的特征峰,对应着 Ni (111)的特征峰。当添加 MgO 后,发现 Ni-Mg/ RHA 上未出现 Ni 的特征峰,出现 NiMgO 的特征 峰,且峰的衍射角度向左偏移,说明 NiO 与 MgO 相 互作用,形成 NiMgO 的晶相结构,更容易在低衍射 度下被检测。除此之外,对于 3Ni/RHA 催化剂,添 加 3%的 MgO 后,在 2θ 为 43.3°的特征峰变宽,峰 强度降低,这说明 MgO 改善了活性金属 Ni 的分散 度。通过对比不同 Mg 负载量的 3Ni-Mg/RHA 的 XRD 图发现,衍射峰的强度随着负载量的增加而增 强,说明负载金属的晶粒尺寸在逐渐增加。当负载 量过高时,活性金属易在表面发生堆积,导致晶体的

团聚或堵塞催化剂载体孔道[21]。

2.6 表面形貌分析

图 8 为 MgO 加入 Ni/RHA 催化剂前后的扫描 电镜图像。MgO负载对催化剂的整体形貌有明显 的影响。3Ni/RHA 催化剂结构表面光滑,有少量 的微粒附着在上面,这些微粒可能是金属镍的活性 位点(图 8A)。MgO 的加入使催化剂的形貌发生了 明显的变化。3Ni-3Mg/RHA 催化剂表面出现较大 颗粒,可能是形成的 NiO-MgO 固溶体(图 8B)。这 些大颗粒促进了催化剂与甲苯的相互作用,从而提 高了催化反应性能。3Ni-6Mg/RHA 催化剂表面变 得致密,有明显的层状结构(图 8C),为催化反应提 供了更多的场所。在 3Ni-9Mg/RHA 催化剂表面 观察到金属团聚的现象(图 8D)。随着 MgO 的加 入,催化剂表面多孔结构明显增加。然而,过量的

Fig.8 Surface morphology of Ni/RHA catalysts with and without MgO

降低。

2.7 比表面积及孔径分析

表 2 显示了具有不同 Mg 负载量的 3Ni-Mg/ RHA 催化剂的比表面积和孔结构参数,其中加入 3Ni/HZSM-5作为参照。HZSM-5作为一种介孔 材料,具有发达的孔径结构。3Ni/HZSM-5的比表 面积为 260 m²/g、孔粒径 2.3 nm, 而 3Ni/RHA 的 比表面积仅为 24 m²/g、孔粒径 22.6 nm,两者相差

MgO负载会导致金属团聚,导致孔洞堵塞,阻止反 10倍左右(表 2),说明以无定型二氧化硅为主的 应气体扩散到催化剂载体中,最终导致催化活性 RHA载体其孔径结构不发达,没有多孔结构,导致 Ni 颗粒在催化表面的活性位点较少。添加 Mg 助 剂后,催化剂比表面积和平均孔体积增加,孔粒径减 小。当 Mg 负载量为 6% 时, 3Ni-6Mg/RHA 相比 3Ni/RHA催化剂的表面积从 24 m²/g 增加至 72 m²/g,平均孔体积从 0.14 cm³/g 增加至 0.20 cm³/g,孔粒径从 22.6 nm 减小至 11.3 nm,可能的 原因是 MgO 的添加后, MgO 与 NiO 相互作用形成 的固溶体集中在催化剂的外层,使催化剂表面变得

粗糙多孔,使比表面积和平均孔体积扩大。

结合图 8 观察到 3Ni-Mg/RHA 的表面形貌, 添加 MgO 后,Ni/RHA 表面出现大颗粒物质,而这 个大颗粒是由表面小颗粒凸出增加而形成的,不是 本身颗粒团聚变大,因此对比表面积没有减小。 Blanco 等^[12]研究表明,金属助剂的添加可能导致金 属表面活性位点的改变或催化剂表面几何结构的改 变。随着 MgO 的加入,催化剂表面多孔结构明显 增加,这与 SEM 分析结果一致。结合 Ni/RHA 和 Ni-Mg/RHA 催化剂在甲苯水蒸气催化重整的活性 测试中发现,由于 Ni/RHA 催化剂比表面积低,孔 体积小,活性金属聚集在催化剂外层,其内部没有多 孔结构,导致甲苯催化重整后积炭形成,容易覆盖活 性位点,这可能是 Ni/RHA 催化剂催化活性差的原 因。一般来说,对于镍基催化剂,载体的孔径越大, 越容易让反应物分子进入到孔道内,使负载在孔道 里的镍颗粒充分反应。而添加 MgO 改性后,催化 剂表面积和孔体积变大,表面产生多孔结构,为甲苯 和水蒸气提供了更多的反应场所,增加了催化剂的 活性位点,从而提升了催化剂的催化性能。

表 2 RHA 负载催化剂的孔结构分析

fable 2 Ana	alysis of the	pore structure of	RHA	supported	catalyst
-------------	---------------	-------------------	-----	-----------	----------

催化剂 Catalysts	比表面积/(m ² /g) S _{BET}	平均孔体积/(cm ³ /g) V	中孔体积/(cm ³ /g) V _{Micro}	微孔体积/(cm³/g) V _{Meso}	孔径/nm Pore size
3Ni/HZSM-5	260	0.15	0.10	0.05	2.3
3Ni/RHA	24	0.14	0.01	0.13	22.6
3Ni-3Mg/RHA	61	0.21	0.00	0.21	13.6
3Ni-6Mg/RHA	72	0.20	0.00	0.20	11.3
3Ni-9Mg/RHA	68	0.19	0.01	0.18	10.8

3 讨 论

一般来说,在 Ni 基催化剂中,催化剂载体在催 化反应中起着重要的作用,载体为反应物提供吸附 位点,并与活性金属相互作用得到新的相^[16]。 Ni/RHA和 Ni/HZSM-5 相比, RHA 作为生物质燃 烧产物,其比表面积小、孔径结构简单。在Ni/RHA 催化剂中,活性金属聚集在催化剂外层,其内部没有 多孔结构,甲苯催化重整后易形成积炭覆盖活性位 点,导致单金属 Ni 负载的 Ni/RHA 催化剂的催化 活性较低。而添加 MgO 改性后,催化剂表面积和 孔体积变大,表面产生多孔结构,说明 MgO 的负载 改善了 RHA 负载催化剂的比表面积和孔体积,为 甲苯和水蒸气提供了更多的反应场所。在晶体结构 分析中发现,添加 MgO 后,Ni-Mg/RHA 上未出现 Ni 的特征峰,出现 NiMgO 的特征峰,且峰的衍射角 度向左偏移,由于 NiO 与 MgO 相互作用,形成 NiMgO的晶相结构,更容易在低衍射度下被检测, 这说明 MgO 改善了活性金属 Ni 的分散度,并提供 了 NiMgO 固溶体活性位点,从而提升了催化性能。 当 Mg 负载量低时,NiO 和 MgO 接触少,相互作用 力小,形成 NiMgO 固溶体活性中心相对较少,导致 催化剂活性不足,未反应的甲苯生成积炭易于附着 在催化剂表面;当 Mg 负载量过高时,活性金属发生 团聚,阻止了活性位点与甲苯和水蒸气接触,导致催 化活性下降,在催化剂表面形成积炭。MgO负载量

为 6%时, 3Ni-6Mg/RHA 催化剂的性能最佳。 3Ni-6Mg/RHA的最佳反应条件为温度 700 ℃、S/C 为 3,水蒸气重整性能最佳,甲苯转化率高达98.6%, 反应后催化剂积炭为 1.78%,在 8 h 连续稳定性测 试,保持着较高的催化活性。本研究结果表明,添加 稻壳灰(RHA)和碱土金属 MgO 的改性 Ni/RHA 催化剂在甲苯的蒸汽重整中表现良好的催化活性, 实现了价格低廉的谷壳灰作为 Ni 剂催化剂载体,通 过 MgO 负载使催化剂达到高活性的催化重整 性能。

参考文献 References

- [1] 李大中,王卉.稻秆气化焦油催化裂解脱除过程模型改进与优化[J].农业机械学报,2010,41(3):109-112.LI D Z,WANG H. Improving and optimizing the LS-SVM model of rice straw gasificaton tar removal process by catalytic cracking[J].Transactions of the Chinese society for agricultural machinery,2010, 41(3):109-112(in Chinese with English abstract).
- [2] 张子豪,袁巧霞,代佩.畜禽粪便与秸秆混合热解制备生物炭研究[J].华中农业大学学报,2019,38(1):133-138.ZHANG Z H, YUAN Q X,DAI P.Biochar fertilizer utilization characteristics of mixed pyrolysis of livestock manure and straw[J].Journal of Huazhong Agricultural University, 2019, 38(1): 133-138(in Chinese with English abstract).
- [3] 孙海权,张晓东,陈雷,等.生物质焦油模型化合物的催化转化
 [J].农业工程学报,2009,25(7): 201-203.SUN H Q,ZHANG
 X D,CHEN L, et al.Catalytic conversion of biomass pyrolysis

tar model compound[J]. Transactions of the CSAE, 2009, 25
(7):201-203(in Chinese with English abstract).

- [4] JI X,LIU B,MA W,et al.Effect of MgO promoter on Ni-Mg/ ZSM-5 catalysts for catalytic pyrolysis of lipid-extracted residue of Tribonema minus[J].Journal of analytical and applied pyrolysis, 2017, 123:278-283.
- [5] GUAN G, KAEWPANHA M, HAO X, et al. Catalytic steam reforming of biomass tar: prospects and challenges[J].Renewable and sustainable energy reviews, 2016, 58: 450-461.
- [6] DONG Q, LI H, ZHANG S, et al. Biomass tar cracking and syngas production using rice husk char-supported nickel catalysts coupled with microwave heating[J].RSC advances, 2018 (8):40873-40882.
- [7] CLAUDE V, MAHY J G, DOUVEN S, et al.Ni- and Fe-doped γ-Al₂O₃ or olivine as primary catalyst for toluene reforming [J/OL].Materials today chemistry, 2019, 14:100197[2020-10-25]. https://doi.org/10.1016/j.mtchem.2019.100197.
- [8] ZHANG Z, LIU L, SHEN B, et al. Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification [J]. Renewable and sustainable energy reviews, 2018, 94:1086-1109.
- [9] LI D.KOIKE M.CHEN J.et al.Preparation of Ni-Cu/Mg/Al catalysts from hydrotalcite-like compounds for hydrogen production by steam reforming of biomass tar[J]. International journal of hydrogen energy, 2014, 39(21):10959-10970.
- [10] SHEN Y,ZHAO P,SHAO Q,et al. In situ catalytic conversion of tar using rice husk char/ash supported nickel-iron catalysts for biomass pyrolytic gasification combined with the mixingsimulation in fluidized-bed gasifier[J]. Applied energy, 2015, 160;808-819.
- [11] SHEN Y,ZHAO P,SHAO Q,et al. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification [J]. Applied catalysis B: environmental,2014,152/153:140-151.
- [12] BLANCO P H, WU C, ONWUDILI J A, et al. Characterization and evaluation of Ni/SiO₂ catalysts for hydrogen production and tar reduction from catalytic steam pyrolysis-reforming of

refuse derived fuel[J]. Applied catalysis B: environmental, 2013,134/135:238-250.

- [13] CHEN G Y, LIU C, MA W C, et al. Catalytic cracking of tar from biomass gasification over a HZSM-5-supported Ni-MgO catalyst[J].Energy & fuels, 2015, 29(12):7969-7974.
- [14] AHMED T,XIU S,WANG L,et al.Investigation of Ni/Fe/Mg zeolite-supported catalysts in steam reforming of tar using simulated-toluene as model compound [J]. Fuel, 2018, 211: 566-571.
- [15] ZOU X, CHEN T.An insight into the effect of calcination conditions on catalytic cracking of toluene over 3Fe8Ni/palygorskite: catalysts characterization and performance [J]. Fuel, 2017,190:47-57.
- [16] WANG K,DOU B,JIANG B,et al.Effect of support on hydrogen production from chemical looping steam reforming of ethanol over Ni-based oxygen carriers[J].International journal of hydrogen energy,2016,41(39):17334-17347.
- [17] YU H,LIU Y,LIU J,et al. High catalytic performance of an innovative Ni/magnesium slag catalyst for the syngas production and tar removal from biomass pyrolysis [J/OL]. Fuel, 2019, 254:115622 [2020-10-25]. https://doi.org/10.1016/j.fuel. 2019.115622.
- [18] LUO X, HONG Y, WANG F, et al. Development of nano Ni_x Mg_y O solid solutions with outstanding anti-carbon deposition capability for the steam reforming of methanol[J]. Applied Catalysis B: environmental.2016.194:84-97.
- [19] CHEN G,GAO J,XU L, et al.Optimizing conditions for preparation of MnO_x/RHA catalyst particle for the catalytic oxidation of NO[J]. Advanced powder technology, 2012, 23 (2): 256-263.
- [20] ARENA F, LICCIARDELLO A, PARMALIANA A. The role of Ni²⁺ diffusion on the reducibility of NiO/MgO system: a combined TRP-XPS study[J]. Catalysis letters, 1990, 6 (1): 139-149.
- [21] BAIDYA T, CATTOLICA R J, SEISER R. High performance Ni-Fe-Mg catalyst for tar removal in producer gas[J]. Applied catalysis A:general,2018,558:131-139.

Steam reforming tar model compound with Ni-Mg/RHA catalyst

WU Wei, FAN Qizhou, YI Baojun, LIU Bichen

College of Engineering, Huazhong Agricultural University, Wuhan 430070, China

Abstract Biomass gasification is a technology that converts biomass into gas fuel. However, complex tar compounds will be formed in the process, resulting in reduced gasification efficiency and blockage of downstream equipment. Catalytic steam reforming has been widely used for tar removal. Nickelbased steam reforming catalysts have attracted people's attention due to its high activity and low cost.

Among them, deactivation caused by coke deposition is the biggest challenge of this technology. The nickel-based catalyst came into being. The loading of metal Ni in the modified nickel-based catalyst not only affects the activity of the nickel-based catalyst, but also restricts the preparation cost. At present, there is no report on the steam reforming of biomass tar with a catalyst supporting Ni-Mg active components on the by-product RHA (rice husk ash, RHA) of biomass pyrolysis in the treatment of tar with nickel-based catalysts. This article introduces a promoter and RHA as a carrier to improve the catalytic performance of the catalyst. It will be of great significance for improving the economic efficiency and anti-coking performance of the catalyst. Biomass combustion product of rice husk ash was selected as the carrier, and Ni-Mg/RHA catalyst was prepared by co-impregnation method. The catalytic performance of Ni-Mg/RHA for steam reforming of toluene was studied using toluene as a model compound of biomass tar. The effects of Ni and Mg loadings, reaction temperature and S/C ratio on toluene conversion and gas product composition were investigated in a fixed-bed reactor. The catalysts before and after reaction were characterized by XRD, BET and SEM. The results showed that RHA as a support of single metal Nibased catalyst had a certain catalytic activity. Compared with Ni/RHA and Ni/HZSM-5, RHA is a biomass combustion product with small specific surface area and simple pore size structure. In the Ni/RHA catalyst, the active metal is gathered in the outer layer of the catalyst, and there is no porous structure inside. After catalytic reforming of toluene, carbon deposition is easy form to cover the active site, resulting in the low catalytic activity of Ni/RHA catalyst supported by single metal Ni. After adding MgO modification, the catalyst surface area and pore volume was increased and the surface generated porous structure, indicating that the MgO load improved the specific surface area and pore volume of RHA-supported catalyst providing more reaction sites for toluene and water vapor. Results of crystal structure analysis showed that after adding MgO style, Ni characteristic peak did not appear on the Ni-Mg/RHA. NiMgO characteristic peak, peak diffraction angle shifted to the left. Because of the interaction between NiO and MgO style, NiMgO crystal phase structure more easily formed under the low degree of diffraction is detected, indicating that MgO style improves the dispersion of active metal Ni and provides NiMgO solid solution activity sites, which improved the catalytic performance. When Mg load was 6%, the performance was the best, with the toluene conversion rate of 98.6%. The optimal reaction temperature of 3Ni-6Mg/RHA catalyst was 700 °C and S/C was 3, having good catalytic stability. The optimal reaction temperature of 3Ni-6Mg/RHA was 700 °C and S/C was 3, having good catalytic stability. The feasibility of using rice husk ash as the support of nickel-based catalyst in the presence of MgO is confirmed.

Keywords tar model compound; steam reforming; nickel-based catalyst; biomass gasification; promoter; rice husk ash; biomass energy

(责任编辑:陆文昌)