涂鸣,曹涛,万志华,等.菱角离散元粘结参数标定与剪切试验[J].华中农业大学学报,2023,42(4):270-278. DOI:10.13300/j.cnki.hnlkxb.2023.04.031

# 菱角离散元粘结参数标定与剪切试验

涂鸣1,曹涛1,万志华1.2,莫泓滔1,张国忠1

1.华中农业大学工学院/农业农村部长江中下游农业装备重点实验室,武汉430070;
 2.武汉轻工大学机械工程学院,武汉430023

摘要 针对菱角(Trapa bispinosa Roxb.)脱壳初加工装备设计与仿真分析时缺乏有效的离散元模型问题, 开展菱角粘结离散元参数标定与样机试验工作。采用三维反求技术获取菱角轮廓模型,测取菱角本征参数及基 本接触参数,得到菱角平均剪切力为352.95 N,并以此为标定目标,采用EDEM软件中的Hertz-Mindlin with bonding模型建立菱角离散元模型,通过单因素试验筛选粘结参数标定范围,由二水平析因试验、最陡爬坡试验 筛选显著因素及其标定区间,设计响应面试验求解粘结参数,确定离散元模型中的最优粘结参数组合,开展旋转 剪切仿真试验及样机验证试验。结果显示:仿真得到的菱角脱壳剪切力为352 N,与实际误差为0.269%;菱角剪 切刀具为矩形,转速230 r/min时,剪切力最小值为93.20 N,与预测值92.99 N的误差为0.215%;样机试验中矩 形刀具在转速为230 r/min时各项性能指标最优,表明建立的菱角离散元模型可靠。

关键词 菱角;离散元;粘结参数;标定;剪切;仿真试验
中图分类号 S226.4 文献标识码 A 文章编号 1000-2421(2023)04-0270-09

菱角(*Trapa bispinosa* Roxb.)为菱科一年生草本 水生植物<sup>[1]</sup>,在我国有超过7000 a 的种植历史<sup>[2]</sup>。 随着生产力水平的不断提高,菱角及菱角粉丝、菱角 罐头、菱角果冻等深加工产品逐渐被国民端上餐 桌<sup>[3-4]</sup>,经济效益逐步体现。然而,菱角深加工产品 均需手工脱壳预处理,目前暂无成熟适用的菱角脱 壳设备替代人工作业,致使产业机械化程度低,生产 力有限<sup>[5]</sup>。

离散元法及仿真软件EDEM常用于农业物料与 机械装备的接触特性研究中<sup>[6-8]</sup>。在EDEM中 Hertz-Mindlin with bonding接触模型用粘结的形式 将颗粒粘结成农业物料模型,颗粒间形成的粘结键 可以承受法向和切向剪切应力,以此模拟物料的粘 结键断裂和颗粒破碎过程,该模型在农业物料的剪 切、挤压过程和触土部件与土壤的耕作机制等研究 领域广泛应用,例如,张国忠等<sup>[9-10]</sup>借助逆向建模和 物理实验,建立了荸荠离散元模型,应用Hertz-Mindlin with bonding模型对粘结参数进行了虚拟标定,并 进一步以荸荠芽和根的切削力为评价指标,并以锯 齿旋切刀结构和工作参数为影响因素开展优化试 验,得到了旋切刀的最佳参数组合。焦俊等<sup>[11]</sup>建立 了莲藕主藕体离散元模型,开展了主藕体弯曲破坏 离散元单因素和二因子模拟试验,仿真分析了主藕 体弯曲破坏的损伤因素。廖官涛等[12]对饲料油菜茎 秆进行了弯曲破坏仿真试验,通过响应面分析确定 了茎秆破碎离散元仿真模型的主要参数,为薹期饲 料油菜机械化收获的仿真提供基本参数。余参参 等[13]测定了3种微型薯的物理力学特征和接触力学 参数,求取了微型薯间的滚动摩擦因数。郝建军 等[14]建立了麻山药双峰分布离散元模型,标定并验 证了沙壤土堆积角和粘结参数间的回归模型,为麻 山药收获及后续加工过程的仿真分析提供了基本参 数。郭三琴等[15]建立了硬颗粒饲料离散元模型,通 过堆积角、最陡爬坡和响应面优化试验,标定了硬颗 粒饲料-钢以及硬颗粒饲料-尼龙间的碰撞恢复系数、 静摩擦因数和滚动摩擦因数。袁全春等[16]选择 Hertz-Mindlin with bonding 模型建立了肥块模型和 碎肥刀仿真模型,通过单因素仿真试验分析了碎肥 刀转速、刃口角等参数对刀片阻力及肥块破碎率的 影响;基于均匀设计试验得到了最优的碎肥刀和作

收稿日期:2023-04-04

涂鸣,E-mail:mingtu@mail.hzau.edu.cn

通信作者:张国忠, E-mail: zhanggz@mail.hzau.edu.cn

基金项目:国家特色蔬菜产业技术体系专项(CARS-24-D-02);湖北省高等学校优秀中青年科技创新团队计划项目(T201934)

形量和轴向变形量之比,反映了菱角单向变形的弹 性指数,计算公式如式(2)所示。弹性模量*E*体现菱 角抵抗弹性变形的能力,通过压缩试验获得,计算公 式如(3)所示。

$$\mu = \left| \frac{\delta_1}{\delta_2} \right| = \frac{W_1 - W_2}{L_1 - L_2} \tag{2}$$

$$E = \frac{F \times L}{S \times \Delta L} \tag{3}$$

式(2)中, $\delta_1$ 和 $\delta_2$ 分别为菱角横向和轴向变形量,mm; $W_1$ 和 $W_2$ 分别为菱角压缩前、后的横向尺寸,mm; $L_1$ 和 $L_2$ 分别为菱角压缩前、后的轴向尺寸,mm;F为菱角弹性变形阶段最大承受力,N;L为样本初始长度,mm;S为样本横截面积,mm<sup>2</sup>; $\Delta L$ 为样本 压缩前后长度差,mm。

本研究采用 TMS-Pro 质构仪单轴压缩试验测 量菱角泊松比及弹性模量,如图1所示。质构仪末端 执行器选取平板压头,加载速率为30 mm/min,试验 重复10次,得到的菱角平均泊松比和弹性模量分别 为0.30和9.85 MPa。

平板压头 Flat press head; 2.菱角 Water caltrop.
 图1 单轴压缩试验
 Fig.1 Uniaxial compression experiment

### 1.3 基本接触参数

EDEM软件中的基本接触参数包含了碰撞恢复 系数、静摩擦因素和滚动摩擦因素。碰撞恢复系数 表征两物料碰撞后的恢复能力,只与材料本身有关, 其数值为碰撞前后两物体在接触点处的法向相对分 离速度与法向相对接近速度之比,本研究涉及菱角 间的接触以及菱角与钢之间的接触,借助pco.dimax HD高速摄影机和坐标纸对该参数进行测量<sup>[18]</sup>。菱 角的静摩擦因素和滚动摩擦因素采用艾瑞斯ASR-3009摩擦因数测试仪进行测定,通过更换仪器接触面 板材料,测定菱角与菱角、菱角与钢板的摩擦因数<sup>[19]</sup>。 每组试验重复测量6次,得到的菱角-菱角和菱角-钢 间的碰撞恢复系数、静摩擦因素、滚动摩擦因素测定

业结构参数。赵淑红等<sup>[17]</sup>基于EDEM建立了深松 铲-土壤-秸秆-根茬的离散元模型,仿真分析了工作 参数、根茬状态和秸秆间的相互影响,探究了秸秆在 不同状态下的运动规律并分析了扰动比阻。综上可 知,Hertz-Mindlin with bonding模型多应用在土壤与 触土部件的耕作机制及农业物料与工作部件的互作 机制研究中,目前已有较多农业物料具备准确的粘 结参数,但由于各物料粘结参数不尽相同,难以为菱 角初加工机具的仿真分析提供准确参数,因此,需对 菱角开展离散元参数标定工作。

本研究以菱角为研究对象,首先通过物料特性 试验获取菱角本征参数及基础接触参数,借助三维 反求技术获得菱角外形轮廓,建立EDEM菱角离散 元模型;之后采用质构仪获得菱角平均剪切应力,开 展立放剪切试验获取Hertz-Mindlin with bonding 模 型粘结参数,并在EDEM中仿真分析不同刀具旋转 剪切菱角的受力情况,确定刀具模型及最佳剪切转 速;最后加工试制剪切振动式菱角脱壳样机,验证菱 角离散元建模与参数标定的可靠性,旨在为菱角脱 壳初加工装备的刀具设计及关键工作参数的确定提 供参考依据。

# 1 材料与方法

# 1.1 试验材料

试验材料选用位于浠水县天井湖菱角产业园的 华中农业大学水生蔬菜生产机械化试验基地种植的 牛角菱,2022年7月2日采摘并挑选颗粒饱满、无损 伤无病虫害的菱角作为试验样品,从采摘的菱角中 随机选取100个,烘干称质量法测定其平均含水率为 74.31%,游标卡尺测量外形尺寸获得菱角的平均长 度、厚度与高度尺寸分别为76.01、24.48、34.63 mm。

# 1.2 本征参数

本征参数包括密度、泊松比和弹性模量,其中密 度 ρ 由排水法测得,计算公式为:

$$\rho = \frac{m}{V - V_0} \tag{1}$$

式(1)中, $\rho$ 为菱角密度,g/cm<sup>3</sup>;m为菱角单粒质量,g; $V_0$ 和V分别为菱角放入前、后量筒内的体积,mL。

将菱角表皮水分擦干,电子天平测量质量,再用 细线系住其一侧尖角,放入盛水的量筒中测量其体 积。为降低读数误差,将100个随机选取的菱角平均 分成10组,密度测量结果为1.09g/cm<sup>3</sup>,变异系数为 结果分别为0.43、0.55、0.15和0.45、0.35、0.10。

### 1.4 粘结参数与标定试验

为获得反应离散元模型剪切情况的准确参考 值,通过TMS-Pro质构仪对菱角进行立放剪切试 验,测取加载过程中最大剪切力作为目标标定值,如 图2所示。质构仪末端执行器采用长60mm、宽40 mm、厚0.5mm,刀片刃口夹角为60°的V型剪切刀 片,加载速率为30mm/min,试验重复10次,得到加 载曲线峰值的平均值352.95N,作为目标标定值。



1.V型剪切刀片 V-shaped shearing blade; 2.菱角 Water caltrop.图 2 菱角立放剪切试验

#### Fig.2 Water caltrop vertical shear experiment

在粘结键形成过程中,颗粒间相互作用力及力 矩随时间变化可由式(4)计算。

$$\begin{cases} \delta F_{n} = -v_{n}x_{1}\pi x_{5}^{2} \delta t \\ \delta F_{t} = -v_{t}x_{2}\pi x_{5}^{2} \delta t \\ \delta M_{n} = -\omega_{n}x_{2}\frac{\pi x_{5}^{4}}{2} \delta t \\ \delta M_{t} = -\omega_{t}x_{1}\frac{\pi x_{5}^{4}}{4} \delta t \end{cases}$$

$$(4)$$

当粘结键承受的法向及切向承受的应力达到式 (5)中临界值时,粘结键断裂:

$$\begin{cases} x_{3} < \frac{-F_{n}}{\pi x_{5}^{2}} + \frac{4M_{t}}{\pi x_{5}^{3}} \\ x_{4} < \frac{-F_{t}}{\pi x_{5}^{2}} + \frac{2M_{n}}{\pi x_{5}^{3}} \end{cases}$$
(5)

式(4)~(5)中, $F_n$ 和 $F_t$ 分别为法向和切向剪切 力,N; $M_n$ 和 $M_t$ 分别为法向和切向力矩,N·m; $x_1$ 和  $x_2$ 分别为单位面积法向刚度和单位面积切向刚度, N/m<sup>3</sup>; $x_3$ 和 $x_4$ 分别为临界法向应力和临界切向应力, Pa; $x_5$ 为粘结半径,mm; $v_n$ 和 $v_t$ 分别为法向和切向速 度,m/s; $w_n$ 和 $w_t$ 分别为法向和切向角速度,rad/s。

标定菱角剪切破碎模型中的粘结参数,首先需 要对EDEM仿真软件中Hertz-Mindlin with bonding 模型的 $x_1, x_2, x_3, x_4 和 x_5$ 等5个因素开展单因素试验 以获得各因素对最大剪切力的影响趋势,结合已有 研究基础及相近物料的离散元参数模型研究<sup>[5,9]</sup>,初 步设定菱角离散元参数标定范围如表1所示。

表1 菱角粘结仿真参数

| Table 1 | Bonding | simulation | parameters | for | water | caltrop |
|---------|---------|------------|------------|-----|-------|---------|
|---------|---------|------------|------------|-----|-------|---------|

| 参数 Parameters | 数值 Value                                   |
|---------------|--------------------------------------------|
| $x_1/(N/m^3)$ | $1.0 \times 10^{7} \sim 1.0 \times 10^{9}$ |
| $x_2/(N/m^3)$ | $5.0 \times 10^7 \sim 1.24 \times 10^9$    |
| $x_3$ /Pa     | $1.0 \times 10^6 \sim 1.0 \times 10^8$     |
| $x_4$ /Pa     | $1.0 \times 10^6 \sim 1.0 \times 10^8$     |
| $x_5/mm$      | 1.2~2.0                                    |

各因素具体水平如表2所示,由于 $x_1 \sim x_4$ 各因数取值范围量级较大,为兼顾各个量级,取各因素的量级端点及中间位置作为水平,其中因素 $x_2$ 中由于 $5.0 \times 10^9$  N/m<sup>3</sup>量级较大无法顺利生成粘结键,经仿真试验取 $1.24 \times 10^9$  N/m<sup>3</sup>作为 $x_2$ 的最大量级开展仿真试验,因素 $x_5$ 平均取5个点作为水平开展试验。

表 2 单因素试验水平表 Table 2 Single factor test level

| 会粉 Demonstern                      |     |     | 水平 Leve | 1    |      |
|------------------------------------|-----|-----|---------|------|------|
| 参数 Parameters                      | 1   | 2   | 3       | 4    | 5    |
| $x_1/(\times 10^8 \mathrm{N/m^3})$ | 0.1 | 0.5 | 1.0     | 5.0  | 10.0 |
| $x_2/(	imes 10^8 \mathrm{N/m^3})$  | 0.5 | 1.0 | 5.0     | 10.0 | 12.4 |
| $x_3/\!	imes\!10^7\mathrm{Pa}$     | 0.1 | 0.5 | 1.0     | 5.0  | 10.0 |
| $x_4/\!	imes\!10^7\mathrm{Pa}$     | 0.1 | 0.5 | 1.0     | 5.0  | 10.0 |
| $x_{\epsilon}/mm$                  | 1.2 | 1.4 | 1.6     | 1.8  | 2.0  |

二水平析因试验结果的方差分析可以在影响因 素较多的情况下,确定各个因素对最大剪切力的影 响是否显著,根据单因素试验结果,选取各因素参数 区间作为二水平析因试验的上下水平,如表3所示, 并在 Design-Expert 13 中设计二水平析因试验共 16 组。

# 表3 二水平析因试验水平表 Table 3 Two-level analysis factor experiment levels

| 会教 Deremeters                      | 水平 Level |     |  |  |
|------------------------------------|----------|-----|--|--|
| 参数 Farameters                      | -1       | 1   |  |  |
| $x_1/(\times 10^7 \mathrm{N/m^3})$ | 1.0      | 5.0 |  |  |
| $x_2/(	imes 10^8 \mathrm{N/m^3})$  | 1.0      | 5.0 |  |  |
| $x_3/	imes 10^7\mathrm{Pa}$        | 1.0      | 5.0 |  |  |
| $x_4/\!	imes\!10^7\mathrm{Pa}$     | 1.0      | 5.0 |  |  |
| $x_5/mm$                           | 1.4      | 1.6 |  |  |

最陡爬坡试验可快速确定显著影响因素的最优标定区间,对二水平析因试验筛选出的显著因素单位面积法向刚度*x*<sub>1</sub>和单位面积切向刚度*x*<sub>2</sub>开展最陡爬坡试验,试验水平如表4所示。

为得到最佳仿真参数,在Design-Expert 13中选

| 表4 最陡爬坡试验水平表 |                                                  |                                   |  |  |  |  |
|--------------|--------------------------------------------------|-----------------------------------|--|--|--|--|
| Table 4      | Table 4         Steepest climb experiment levels |                                   |  |  |  |  |
| 水平 Level     | $x_1/(	imes 10^7 \mathrm{N/m^3})$                | $x_2/(	imes 10^8 \mathrm{N/m^3})$ |  |  |  |  |
| -2           | 4.2                                              | 4.2                               |  |  |  |  |
| -1           | 4.5                                              | 4.5                               |  |  |  |  |
| 0            | 4.8                                              | 4.8                               |  |  |  |  |
| 1            | 5.1                                              | 5.1                               |  |  |  |  |
| 2            | 5.4                                              | 5.4                               |  |  |  |  |

用Central composite 模型开展响应面试验,以最陡爬 坡试验中最接近目标标定值的试验水平0和2作为 响应面试验上下限,设计试验共9组,试验水平如表5 所示。

表5 粘结参数水平表 Table 5 Bonding parameter levels

| 水平 Level | $x_1/(	imes 10^7 \mathrm{N/m^3})$ | $x_2/(	imes 10^8 \mathrm{N/m^3})$ |
|----------|-----------------------------------|-----------------------------------|
| -1       | 4.8                               | 4.8                               |
| 0        | 5.1                               | 5.1                               |
| 1        | 5.4                               | 5.4                               |

### 1.5 菱角剪切破碎模型

图3为菱角剪切破碎模型建立流程,图3A为试 验采用的牛角菱,其外形不规则,呈牛角状,难以采 用常规方法建模,因此,首先通过三维反求技术获取 菱角轮廓三维点云数据,通过曲线与曲面拟合后抽 壳优化处理,获得菱角外形空壳(图3B)。之后在 EDEM中生成边长100 mm的立方体并设置颗粒工 厂,将立方体内填充落满直径为1 mm的颗粒(图3C) 后导入空壳菱角模型,通过重力作用落去多余的颗 粒(图3D),获得充满颗粒的菱角模型(图3E),设置 bonding参数生成菱角粘结模型(图3F)。生产后的 模型包含物理半径1 mm、接触半径1.6 mm的颗粒 3 886个,有效粘结键共16 899个,平均每个颗粒有 效粘结键超过4.3,粘结充分。最后导入剪切破碎模 型,调整空间位置,设置运动参数,完成模型建立, 如图4所示。

#### 1.6 刀具模型及转速试验

在建立菱角旋转剪切模型的基础上开展试验, 获取不同剪切刀具的最优工作转速及剪切力,从中 筛选出剪切力最小的刀具,建立刀具转速与剪切力 间的拟合方程。由拟合参数表筛选出刀具受到最小 剪切力时的对应转速,在EDEM模型中得到刀具仿 真受力,并计算误差。通过仿真预测剪切菱角的最 优刀具模型及工作转速,为菱角初加工装备的刀具 设计提供参考。



A:牛角菱角 Water caltrop;B:三维反求模型 3D inverse model; C:颗粒箱 Pellet box;D:填充颗粒 Filling particles;E:菱角模型 Water caltrop model;F:粘结模型 Bonding model.

# 图 3 菱角剪切破碎模型建立流程 Fig.3 Water caltrop shear model setup process



1.V型剪切刀片 V-shaped shear blade; 2. 菱角离散元模型 Water caltrop discrete element model; 3. 剪切基座 Shear base.

图4 EDEM 立放剪切破碎模型 Fig.4 EDEM vertical shear crushing model

# 2 结果与分析

# 2.1 单因素试验

菱角立放剪切单因素试验结果如图5所示,图 5A中, $x_1$ 随量级的增大剪切力逐渐增大, $x_2$ 随量级的 增大剪切力先增大,在1×10<sup>9</sup> N/m<sup>3</sup>时达到最大值后 减小,结果表明 $x_1$ 对剪切力具有增量作用, $x_2 < 1 ×$ 10<sup>9</sup> N/m<sup>3</sup>时对剪切力具有增量作用, $x_2 > 1 × 10^9$ N/m<sup>3</sup>时具有减量作用;图5B中, $x_3$ 和 $x_4$ 在不同量级 的临界应力试验结果均趋近于 $x_1$ 、 $x_2$ 和 $x_5$ 的单因素 试验中间水平的仿真结果,表明 $x_3$ 和 $x_4$ 对剪切力影 响不明显;图5C中, $x_5$ 随量级增大剪切力增大,表明  $x_5$ 对剪切力具有增量作用。

# 2.2 二水平析因试验

二水平析因试验结果显示,剪切力范围在40.6~ 391.1 N,包含目标标定值,验证各因素水平取值合 理。表6为在Design-Expert 13中的试验结果方差分 析,表6中模型、x<sub>1</sub>和x<sub>2</sub>的P值均小于0.01,x<sub>3</sub>、x<sub>4</sub>和x<sub>5</sub> 的*P*值均大于0.05,表明在菱角离散元粘结参数中,*x*<sub>1</sub> 和*x*<sub>2</sub>对剪切力的影响极显著,*x*<sub>3</sub>,*x*<sub>4</sub>和*x*<sub>5</sub>对剪切力影响 不显著,因此对影响极显著的因素*x*<sub>1</sub>和*x*<sub>2</sub>开展最陡爬 坡试验,以快速筛选出*x*<sub>1</sub>和*x*<sub>2</sub>最优粘结参数区间。





表6 二水平析因试验方差分析

| The state of the second s |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| 来源 Source        | 平方和 Sum of squares | 自由度 Free de- | 均方 Mean square   | F 佰 F-volue   | P值 P-value |
|------------------|--------------------|--------------|------------------|---------------|------------|
| <br>术w Source    |                    | gree         | >))) Wear square | I III I value |            |
| 模型 Model         | 203 100.00         | 5            | 40 619.28        | 14.170 0      | 0.000 3    |
| $x_1$            | 33 773.25          | 1            | 33 773.25        | 11.780 0      | 0.006 4    |
| $x_2$            | 156 900.00         | 1            | 157 000.00       | 54.740 0      | < 0.000 1  |
| $x_3$            | 32.21              | 1            | 32.21            | 0.011 2       | 0.917 7    |
| $x_4$            | 1 658.53           | 1            | 1 658.53         | 0.578 5       | 0.464 4    |
| $x_5$            | 10 717.43          | 1            | 10 717.43        | 3.740 0       | 0.082 0    |
| <br>残差 Residuals | 28 667.98          | 10           | 2 866.80         |               |            |

注 Note: P<0.01 极显著 Extremely significant; P<0.05, 显著 Significant; 下同 The same as below.

### 2.3 最陡爬坡试验和响应面试验

图 6 为  $x_1$ 和  $x_2$ 最陡爬坡试验结果,随着  $x_1$ 、  $x_2$ 量级增大,菱角剪切力先减小再增大,随之再 减小,试验剪切力与菱角立放剪切试验的目标 标定值 352.95 N有 2 处交点,对应  $x_1$ 、 $x_2$ 的 取值范围分别在  $4.8 \times 10^7 \leqslant x_1 \leqslant 5.4 \times 10^7$ 、



Fig.6 Results of steepest climb experiment

4.8×10<sup>8</sup>  $\ll x_2 \ll 5.4 \times 10^8$  N/m<sup>3</sup> 量级区间内。为 进一步研究在此量级区间内 $x_1, x_2$ 对剪切力影响 的具体规律,设计 Central composite 响应面试验, 取 $x_1, x_2$ 量级区间上下限作为响应面试验的高低 水平。

对 Central composite 响应面试验结果进行回归 拟合,得到以剪切力 Y为响应, $x_1,x_2$ 为变量的回归方 程,如式(6)所示。

 $Y = 325.31 - 5.68x_1 + 41.92x_2 + 15.45x_1x_2 \tag{6}$ 

表7为响应面试验方差分析,结果显示该模型显 著(P<0.05),x<sub>2</sub>对剪切力影响极显著,x<sub>1</sub>及x<sub>1</sub>与x<sub>2</sub>的 交互项对剪切力影响不显著。

#### 2.4 粘结参数求解

1)最优参数求解及验证。依据 Central composite 响应面试验结果,在 Design-Expert 13 中运用剪切 力回归拟合方程,设置剪切力目标值为 352.95 N,求 解出 $x_1$ 与 $x_2$ 的 87 组最优组合解。对 87 组最优组合 解中的粘结参数依次开展仿真验证试验,要求误差 小于 1%,得到 $x_1$ 为 4.818×10<sup>7</sup> N/m<sup>3</sup>、 $x_2$ 为 5.343×

表7 Central composite 试验方差分析 Table 7 Analysis of variance for the Central composite experiment

| 来源<br>Source   | 平方和<br>Sum of<br>Squares | 自由度<br>Free<br>degree | 均方<br>Mean<br>square | F值<br>F-value | <i>P</i> 值<br><i>P</i> -value |
|----------------|--------------------------|-----------------------|----------------------|---------------|-------------------------------|
| 模型 Model       | 11 587.87                | 3                     | 3 862.62             | 6.680 0       | 0.033 6                       |
| $x_1$          | 205.33                   | 1                     | 205.33               | 0.355 2       | 0.577 1                       |
| $x_2$          | 10 458.38                | 1                     | 10 458.38            | 18.090 0      | 0.008 1                       |
| $x_1 x_2$      | 924.16                   | 1                     | 924.16               | 1.600 0       | 0.261 8                       |
| 残差<br>Residual | 2 890.29                 | 5                     | 578.06               |               |                               |

2)刀具模型选择与参数分析。农业物料剪切刀 具多为矩形刀具、三角形刀具、弧形刀具,因此选用 以上3种刀具模型开展仿真实验,如图7所示。建立 菱角旋转剪切模型,在离散元参数模型中,调整各几 何体空间位置,得到的菱角旋转剪切模型如图8所 示,设置刀具转速分别为25、50、100、150、200、250 r/min进行仿真试验。



1.矩形刀具 Rectangular cutter;
 2.三角形刀具 Triangle cutter;
 3.弧形刀具 Arc cutter.





1. 上下压板 Upper and lower pressure plate; 2. 菱角离散元模型 Water caltrop discrete element model; 3. 模具 Mold; 4. 矩形刀具 Rectangular cutter.

# 图8 菱角旋转剪切模型

Fig.8 Rotary shear model with water caltrop

仿真试验中,3种刀具分别各设置6个水平转速, 得到不同刀具在不同水平转速下的菱角旋转剪切仿 真试验结果如图9所示。结果显示,矩形刀具在各转 速下受力均比其他2种刀具小,因此,选定矩形刀具 作为旋转剪切菱角刀具,对仿真试验结果进行多项 式曲线拟合,拟合方程如式(7)所示。





对拟合方程的参数表进行筛选得到矩形刀具 最小受力为92.99 N,对应的矩形刀具转速为230 r/min,将此转速代入矩形刀具旋转剪切菱角模型中, 得到的刀具受力为93.20 N,误差为0.215%。

#### 2.5 样机验证试验

设计试制的剪切振动式菱角脱壳样机如图10所 示,样机工作原理为:首先将菱角倒入料筒,料筒内 立式螺旋搅龙均匀布料,在差速带动下菱角落入下 方切料转盘,同时上下压板压紧菱角,2组刀轴成对 角线布置在压板两侧,每组刀轴上均布4组矩形刀 具,菱角随切料转盘转动至矩形刀具时被转动的刀 具切开;切开后的菱角继续运动至下料口落入振动 盘中,经高频振动实现菱壳与菱仁分离。样机螺旋 搅龙、切料转盘和振动盘的转速均可由控制电箱分 别独立控制。

为验证设计的矩形刀具及最优转速实际工作效 果,选取完好无病虫害菱角600个,平均分为3组,每 组分别设置刀轴转速为180、230和280r/min,每次 倒入20个菱角开展重复试验,结果如表8所示。表8 中剪切率为剪切的菱角与总菱角数量之比,完切率 为完整切开的菱角与剪切的菱角数量之比,菱仁获 得率为机具剪切获得菱仁质量与总获得质量(总获



1. 立式螺旋搅龙 Vertical spiral churn; 2. 上下压板 Upper and lower pressure plate; 3. 矩形刀具 Rectangular cutter; 4. 菱角 Water caltrop; 5. 切料转盘 Cutting material turntable; 6. 振动盘 Vibrating plate; 7. 菱角壳 Water caltrop shell; 8. 菱仁 Water caltrop nuts; 9. 残 切菱角 Residual water caltrop; 10. 控制电箱 Control box.

# 图 10 样机验证试验 Fig.10 Prototype verification tests

得质量=机具剪切获得菱仁质量+人工二次清捡获 得质量)之比。

表 8 样机验证试验结果 Table 8 Prototype validation experiment results %

| 刀轴转速/<br>(r/min)<br>Cutter shaft speed | 剪切率<br>Shear rate | 完切率 Com-<br>pletion rate | 菱仁获得率<br>Nuts acquisi-<br>tion rate |
|----------------------------------------|-------------------|--------------------------|-------------------------------------|
| 180                                    | 80.00             | 31.25                    | 41.88                               |
| 230                                    | 100.00            | 70.00                    | 74.55                               |
| 280                                    | 100.00            | 40.00                    | 52.43                               |

试验结果表明,样机能够完成菱角的剪切脱壳, 实现菱壳与菱仁的振动分离。当刀轴转速分别为 230 和280 r/min时,可以达到100%的菱角菱壳的剪 切,其中转速为230 r/min时,菱角完切率达到 70.00%、菱仁获得率达到74.55%,各项指标表现 最优。

# 3 讨 论

本研究经测量获得菱角平均含水率为74.31%, 菱角长度、厚度和高度的平均值分别为76.01、24.48、 34.63 mm,密度为1.09 g/cm<sup>3</sup>,泊松比为0.30、弹性模 量为9.85 MPa,菱角间的碰撞恢复系数、静摩擦因 数、滚动摩擦因数分别是0.43、0.55、0.15,菱角与钢 之间的碰撞恢复系数、静摩擦因数、滚动摩擦因数分 别是0.45、0.36、0.10。通过单因素试验确定了各因 素大概标定范围,采用二水平析因试验方差分析得 到显著性因素为:单位面积法向刚度*x*<sub>1</sub>、单位面积切 向刚度 $x_{20}$  由最陡爬坡试验筛选出 $x_1, x_2$ 的标定区间,根据Central composite响应面试验建立 $x_1, x_2$ 与剪切力之间的回归方程,得到最佳参数组合:单位面积法向刚度 $x_1$ 为 $4.818 \times 10^7$  N/m<sup>3</sup>、单位面积切向刚度 $x_2$ 为 $5.343 \times 10^8$  N/m<sup>3</sup>时的仿真剪切力为352 N,误差为0.269%(<1%),符合验证要求,验证了菱角建模与标定参数的可靠性。

对不同刀具开展不同转速的菱角旋转剪切试 验,筛选出矩形刀具转速为230 r/min时,刀具受力最 小为93.20 N,与预测值92.99 N的误差为0.215%。 样机试验在刀轴转速为230 r/min时,机具剪切率、菱 仁完切率及菱仁获得率分别为100%、70.00%、 74.55%,表明所建立菱角离散元粘结参数模型可靠, 可用于菱角脱壳初加工装备刀具的设计与关键参数 的确定,下一步可针对提升完切率及菱仁获得率开 展机具优化设计研究。

本研究采用整菱一体的建模与标定思路,在仿 真时可准确反映整菱的力学及接触特性,但针对菱 角在含水率、冷藏温度等初加工条件差异较大时,菱 仁和菱壳更为准确的粘结特性参数,将为样机的设 计提供重要参考,后续将在整菱标定的基础上,开展 菱仁、菱壳区分的标定工作,为菱角在脱壳过程中菱 仁、菱壳的分离过程提供更为详细的设计和工作 参数。

### 参考文献 References

- [1] 左袁袁,吕寒,简暾昱,等. 菱角壳化学成分及其药理作用研究 进展[J]. 辽宁中医药大学学报,2019,21(4):94-99. ZUO Y Y,LÜH,JIAN T Y, et al. Advance in studies on the chemical constituents of water chestnut shells and their pharmacological effects [J]. Journal of Liaoning University of Traditional Chinese Medicine, 2019, 21 (4): 94-99 (in Chinese with English abstract).
- [2] 严守雷,王清章.水生蔬菜保鲜加工学[M].北京:科学出版 社,2017. YAN S L, WANG Q Z. Fresh-keeping processing of aquatic vegetables[M]. Beijing: Science Press, 2017 (in Chinese).
- [3] 关健,何建军,薛淑静,等. 菱角软罐头制作工艺研究[J]. 长 江蔬菜,2015(22):161-163. GUAN J,HE J J,XUE S J,et al. Study on retort pouch processing of water chestnut[J].Journal of Changjiang vegetables, 2015(22):161-163 (in Chinese with English abstract).
- [4] 李丽,王洪斌,张泽英,等. 菱角保健果冻的研制[J]. 食品研 究与开发,2017,38(6):104-107. LIL,WANGHB,ZHANG ZY,et al. The development of water chestnut jelly[J]. Food research and development, 2017, 38(6):104-107 (in Chinese

with English abstract).

- [5] 万志华. 鲜菱角脱壳机理及脱壳关键技术研究[D]. 武汉:华 中农业大学,2022. WAN Z H. Study on the shelling mechanism and key technology of fresh water caltrop[D]. Wuhan: Huazhong Agricultural University, 2022 (in Chinese with English abstract).
- [6] 于建群,付宏,李红,等. 离散元法及其在农业机械工作部件研究与设计中的应用[J]. 农业工程学报,2005,21(5):1-6. YU JQ,FUH,LIH,et al. Application of discrete element method to research and design of working parts of agricultural machines
  [J]. Transactions of the CSAE,2005,21(5):1-6 (in Chinese with English abstract).
- [7] 顿国强,范芯蕊,杨永振,等. 基于离散元的插装式大豆排种器 改进设计及试验[J]. 华中农业大学学报,2020,39(3):135-144. DUN G Q, FAN X R, YANG Y Z, et al. Improved design and experiment of a plug-in soybean seed metering device based on discrete element[J]. Journal of Huazhong Agricultural University, 2020, 39(3):135-144 (in Chinese with English abstract).
- [8] HORABIK J, MOLENDA M. Parameters and contact models for DEM simulations of agricultural granular materials: a review [J]. Biosystems engineering, 2016, 147: 206-225.
- [9] 张国忠,陈立明,刘浩蓬,等. 荸荠离散元仿真参数标定与试验
  [J]. 农业工程学报,2022,38(11):41-50. ZHANG G Z, CHENLM,LIUHP, et al. Calibration and experiments of the discrete element simulation parameters for water chestnut [J]. Transactions of the CSAE, 2022, 38(11):41-50 (in Chinese with English abstract).
- [10] 张国忠,陈立明,刘浩蓬,等.旋刀式荸荠芽根同步切除装置设 计与试验[J].农业工程学报,2022,38(13):10-19. ZHANG G Z,CHEN L M,LIU H P, et al. Design and experiment of the rotary blade type synchronous cutting device for water chestnut buds and roots[J]. Transactions of the CSAE, 2022, 38(13): 10-19 (in Chinese with English abstract).
- [11] 焦俊,张国忠,杜俊,等. 莲藕主藕体弯曲破坏离散元仿真分析 [J]. 华中农业大学学报,2021,40(5):217-225. JIAO J, ZHANG G Z,DU J, et al. Discrete element simulation of bending failure of main lotus root[J]. Journal of Huazhong Agricultural University, 2021,40(5):217-225 (in Chinese with English abstract).
- [12] 廖宜涛,廖庆喜,周宇,等. 饲料油菜薹期收获茎秆破碎离散元 仿真参数标定[J]. 农业机械学报,2020,51(6):73-82. LIAO Y T,LIAO Q X,ZHOU Y, et al. Parameters calibration of discrete element model of fodder rape crop harvest in bolting stage
  [J]. Transactions of the CSAM, 2020, 51(6):73-82 (in Chi-

nese with English abstract).

- [13] 余参参,段宏兵,蔡兴奎,等. 基于离散元仿真参数的微型薯物 料测定[J]. 华中农业大学学报,2021,40(1):210-217. YU C C,DUAN H B,CAI X K, et al. Discrete element simulation parameters-based measurement of materials for potato minituber
  [J]. Journal of Huazhong Agricultural University,2021,40(1): 210-217 (in Chinese with English abstract).
- [14] 郝建军,龙思放,李浩,等. 机收麻山药离散元模型构建及其仿 真参数标定[J]. 农业工程学报,2019,35(20):34-42. HAO J J, LONG S F, LI H, et al. Development of discrete element model and calibration of simulation parameters for mechanicallyharvested yam[J]. Transactions of the CSAE, 2019,35(20): 34-42 (in Chinese with English abstract).
- [15] 郭三琴,万鹏,杨俊,等.基于离散元的鱼饲料仿真参数标定与 试验[J].华中农业大学学报,2022,41(6):286-295.GUO S Q,WAN P,YANG J, et al. Discrete element based calibration and test of simulation parameters for fish feed [J]. Journal of Huazhong Agricultural University, 2022, 41 (6): 286-295 (in Chinese with English abstract).
- [16] 袁全春,徐丽明,马帅,等. 有机肥深施机肥块破碎刀设计与试 验[J]. 农业工程学报,2020,36(9):44-51. YUAN Q C,XU L M, MA S, et al. Design and test of sawtooth fertilizer block crushing blade of organic fertilizer deep applicator[J]. Transactions of the CSAE,2020,36(9):44-51 (in Chinese with English abstract).
- [17] 赵淑红,高连龙,袁溢文,等. 基于离散元法的深松作业玉米秸 秆运动规律[J]. 农业工程学报,2021,37(20):53-62. ZHAO S H,GAO L L,YUAN Y W, et al. Maize straw motion law in subsoiling operation using discrete element method[J]. Transactions of the CSAE,2021,37(20):53-62 (in Chinese with English abstract).
- [18] 王立军,刘天华,冯鑫,等.农业和食品领域中颗粒碰撞恢复系数的研究进展[J].农业工程学报,2021,37(20):313-322.
  WANGLJ,LIUTH,FENGX, et al. Research progress of the restitution coefficients of collision of particles in agricultural and food fields[J]. Transactions of the CSAE, 2021, 37(20): 313-322 (in Chinese with English abstract).
- [19] 朱广飞,任嘉嘉,王振,等.油茶果脱壳机的设计与工作参数优 化[J]. 农业工程学报,2016,32(7):19-27. ZHU G F,REN J J, WANG Z, et al. Design of shelling machine for *Camellia oleifera* fruit and operating parameter optimization[J]. Transactions of the CSAE, 2016, 32(7):19-27 (in Chinese with English abstract).

# Calibration and shear experiments of discrete element bonding parameters for water caltrop

TU Ming<sup>1</sup>, CAO Tao<sup>1</sup>, WAN Zhihua<sup>1,2</sup>, MO Hongtao<sup>1</sup>, ZHANG Guozhong<sup>1</sup>

 College of Engineering, Huazhong Agricultural University/Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affair, Wuhan 430070, China;
 School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China

Abstract To address the problem of the lack of effective discrete element models in the design and simulation analysis of water caltrop dehulling primary processing equipment, this paper carries out the research work of water caltrop discrete element parameter calibration and prototype test. The 3D inverse technique was used to obtain the water caltrop profile model, and the water caltrop intrinsic parameters and basic contact parameters were measured by physical tests. The average shearing force of the water caltrop was obtained from the uniaxial compression test as 352.95 N, and this was used as the calibration target. Based on the Hertz-Mindlin with bonding model, a water caltrop discrete element model was established to carry out virtual calibration tests on bonding parameters, and the calibration range of each parameter was initially screened by single-factor tests. The two-level analysis factor test and the steepest climb test were used to quickly screen the significant factors and their calibration intervals, and the Central composite response surface test was designed to solve the bonding parameters to determine the optimal combination of parameters in the discrete element model, and a rotary shear water caltrop simulation model was established to study the effects of different tools on water caltrop shear at different rotational speeds, which was used as a basis to design a shear vibration-type water caltrop sheller to carry out prototype tests to verify the reliability of the model. The results show that, the significant effect on the shearing force of the factor normal stiffness per unit area is  $4.818 \times 10^7$  N/m<sup>3</sup>, shear stiffness per unit area is  $5.343 \times 10^8$  N/m<sup>3</sup>, the remaining insignificant factors are taken as the middle level, that is, the normal stress per unit area is  $1 \times 10^7$  Pa, shear stress per unit area is  $1 \times 10^7$  Pa, bond radius of 1.6 mm. The shearing force of the simulated test is 352 N, with an error of 0.269%; the minimum shearing force of the rectangular tool screened from the rotary shear test is 93.20 N at 230 r/min, with an error of 0.215% from the predicted value of 92.99 N; the prototype test shows that the rectangular tool has better performance than other rotational speeds in shearing water caltrop angles at 230 r/min; the comprehensive demonstration shows that the established discrete element model of water caltrop can provide a reference basis for the design of dehulling tools and the determination of key parameters for water caltrop primary machining equipment.

**Keywords** Chinese water caltrop; discrete elements; bonding parameters; calibration; shear; simulation tests

(责任编辑:陆文昌)