拓凯,张朋,王利,等.钙钛矿催化剂用于氨选择性还原氮氧化物的研究进展[J].华中农业大学学报,2020,39(5):26-34. DOI:10.13300/j.cnki.hnlkxb.2020.05.004

钙钛矿催化剂用于氨选择性还原氮氧化物的研究进展

拓凯^{1,2,3},张朋^{1,2,3},王利³,黄宇^{1,3}

1.中国科学院地球环境研究所/黄土与第四纪地质国家重点实验室,西安 710061;
 2.中国科学院大学,北京 100049; 3. 中国科学院气溶胶化学与物理重点实验室,西安 710061

摘要 氨选择性催化还原氮氧化物(NO_x)技术是目前应用较为广泛的催化脱硝技术,钙钛矿材料因其独特的结构、良好的稳定性且环保无害的特点成为选择性催化还原 NO_x 领域的研究热点。本文综述了近年来国内 外关于钙钛矿 NH₃-SCR 催化剂的研究进展,较为全面地对钙钛矿催化剂的主要类型、脱硝活性、构效关系进行 了论述,同时介绍了钙钛矿在光辅助 SCR 技术这一全新领域的研究进展,并总结了钙钛矿催化剂的 NH₃-SCR 反应机制,对该领域未来可能的发展方向和研究目标进行了展望。

关键词 氨选择性催化还原;钙钛矿;催化剂;脱硝活性;氮氧化物(NO_x);NH₃-SCR反应机制;大气污 染控制

中图分类号 O 643.36;O 644.1 文献标识码 A 文章编号 1000-2421(2020)05-0026-09

随着国内工业化及城市化进程的推进,大气污染引发的一系列环境问题逐渐突显,特别是氮氧化物(NO_x)的污染现状严重。NO_x显著破坏大气对流层化学反应,并造成酸雨、光化学烟雾和 PM_{2.5}污染现象,严重影响人体健康及生态环境。随着环境质量需求的提高,我国针对火电厂和轻型机动车NO_x 排放制定了越来越严格的法规和排放控制政策^[1-3],这亟需研究人员开发新型高效氮氧化物排放控制技术。

NH₃-SCR 技术是氮氧化物控制中应用最广泛的技术。催化剂是 NH₃-SCR 技术的核心,可高效地将 NO_x转化为 N₂。以 V₂O₅-WO₃ (MoO₃)/ TiO₂ 为核心催化剂,但其存在温度窗口较窄且偏高、碱金属中毒易失活、钒具有生物毒性对环境造成 二次污染等诸多问题^[4-5],亟需研究者开发具有高活 性、宽温度窗口、良好抗水抗硫性、环保无毒的新型 SCR 催化剂。

钙钛矿型材料具有结构稳定性好、耐高温烧结、 化学吸附能力强、酸碱性位点丰富、氧化还原性质易 调控、储量丰富及价格低廉等优点^[6]。目前已有众 多研究者对钙钛矿型催化剂结构与其 SCR 性能的 构效关系进行研究^[7-8]。本文基于钙钛矿型催化剂 在 NH₃-SCR 反应中的相关研究成果,主要讨论了 催化剂的主要类型、构效关系及 NH₃-SCR 反应机 制,以期为设计和制备 NH₃-SCR 领域的钙钛矿型 催化剂提供参考。

1 钙钛矿型催化剂及其 NH₃-SCR 的 催化性能

钙钛矿是具有 ABO。结构的氧化物的总称,具 有稳定的立方结构,空间群为 Pm3m-Oh^{1[9]}。其中, A 位离子是稀土金属(La、Ce、Pr等)或半径较大的 碱土金属(Mg、Ca、Sr、Ba等)阳离子,B 位离子是过 渡金属(Ti、V、Mn、Fe、Co、Ni等)阳离子。图 1 为 钙钛矿的结构,A 位离子位于立方体结构的中心,与 12 个 O 离子形成配位,B 位离子位于立方体顶角, 与 6 个 O 离子配位形成八面体结构。钙钛矿结构 容许 A 位和 B 位阳离子被其他元素部分取代而不 破坏结构的同时,产生氧空位或元素化学状态变化, 使材料的导电性、氧化还原特性和催化活性得到明 显提升。

钙钛矿催化剂主要有 ABO_3 型、 $A_{1-x}A'_{x}B_{1-y}B'_{y}O_3$

收稿日期:2020-05-06

基金项目:国家自然科学基金项目(51878644)

拓凯,硕士研究生.研究方向:钙钛矿催化剂在 NH3-SCR 领域的应用. E-mail: tuokai@ieecas.cn

通信作者:黄宇,博士,研究员.研究方向:环境大气污染控制技术,室内空气质量及控制技术,VOCs分析及环境效应. E-mail: huangyu@ ieecas.cn

掺杂型和负载型。单纯的 ABO。型钙钛矿因表面酸 碱性位点较少,氧化还原能力不易调控,无法取得理 想的活性。通过掺杂其他元素,可以改变元素化合 态、制造缺陷,调变氧化还原能力,提高催化性能。 将钙钛矿负载到其他载体上,利用载体的特殊结构 和微观性能,增加催化剂的比表面积和催化活性位 点。同时钙钛矿高度均匀分散,减少钙钛矿用量且 达到相同催化效果,可有效降低催化剂成本^[10]。

Fig.1 The structure of perovskite

1.1 ABO₃型钙钛矿

ABO₃ 型钙钛矿催化剂一般使用稀土元素作为 A 位元素,起到稳定结构的作用;B 位元素则主要为 过渡金属,充当催化反应的主要活性位点。ABO₃ 型钙钛矿催化剂在 NH₃-SCR 中应用的研究情况见 表 1。

对 ABO₃ 型钙钛矿的研究主要通过限定 A 位 或 B 位元素,改变另一个元素的方式进行。在 B 位 元素不变的基础上改变 A 位元素,可以考察 A 位元 素对钙钛矿材料性质的影响。Zhang 等^[11]研究了 A 位元素为 Bi 和 La 的 Mn 基钙钛矿型催化剂,发现 BiMnO₃ 催化剂在 100~180 ℃ 内催化活性均超过 85%,而 LaMnO₃ 在 160 ℃ 时催化活性才达到 80%,归因于 BiMnO₃ 拥有更强的路易斯酸(L 酸) 和更高的表面氧浓度,并指出对于低温 NH₃-SCR

表	 1 用于 	NH₃-SCR 的	」ABO₃型	钙钛矿催化	七剂
Table 1	Examples	of ABO ₃ type	perovskite	catalysts for	• NH ₃ -SCR

催化剂 Catalyst	制备方法 Preparation method	反应条件 Reaction conditions	催化活性 Catalytic activity	选择性 Selectivity	文献 Reference
BiMnO₃ LaMnO₃	溶胶凝胶法 Sol-gel	0.1% NH ₃ , $0.1%$ NO, $5%$ O ₂ , Ar balance (40 mL/min), 0.24 mL catalyst, GHSV = 10 000 m ³ /(m ³ · h)	85%,100 ℃ 84%,180 ℃	_	[11]
LaCoO3 LaMnO3 LaFeO3 La2CuO4	溶胶凝胶法 Sol-gel	1 000 μ L/L NO.1 000 μ L/L NH ₃ .6% O ₂ . He balance (100 mL/min).0.2 g catalyst.GHSV=30 000 m ³ /(m ³ • h)	45%,300 ℃ 78%,250 ℃ 25%,300 ℃ 45%,250 ℃	15% 25% 72% 77%	[12]
LaMnO ₃	溶胶凝胶法 Sol-gel	1 000 μ L/L NO.1 000 μ L/L NH ₃ ,6% O ₂ , Ar balance (100 mL/min), 0.2 g catalyst, GHSV=30 000 m ³ /(m ³ • h)	77%,250 ℃	20%	[13]
LaMnO3 CeMnO3 PrMnO3	溶胶凝胶法 Sol-gel	400 $\mu L/L$ NO,400 $\mu L/L$ NH ₃ ,4% O ₂ ,He balance (100 mL/min), 0.2 g catalyst, GHSV = 30 000 m ³ /(m ³ • h)	80%,250 ℃ 90%,250 ℃ 84%,250 ℃	_	[14]
LaMnO ₃	溶胶凝胶法 Sol-gel	500 $\mu L/L$ NO,500 $\mu L/L$ NH $_3$,4 $\%$ O_2 , N_2 balance , GHSV=30 000 $m^3/(m^3$ \cdot h)	77%,200 ℃	_	[15]

催化剂,路易斯酸比布朗斯特酸(B酸)更为重要,更 多的 L 酸位点对 NH。的吸附和活化效果更好。 Zhang 等^[14]研究表明 A 位元素为 Ce 时,Ce 的多价 态使钙钛矿表面具有丰富的吸附氧和多价态 Mn 物 种,丰富的表面吸附氧可以提高催化活性,而多价态 的 Mn 促进了催化剂的氧化还原循环,这 2 个因素 协同作用提高 CeMnO₃ 催化性能。

B 位元素通常在钙钛矿催化剂中充当活性位 点,在 A 位元素不变的基础上改变 B 位元素,以研 究 B 位元素对催化剂吸附性能和催化活性的影响。 Zhang 等^[12]对 LaBO。型钙钛矿材料(B=Cu、Co、 Mn、Fe)的 NH₃-SCR 活性及其反应吸附过程进行 了一系列的研究。LaMnO₃ 表现出最高的脱硝活 性;而 LaFeO₃ 在整个温度区间(100~400 ℃)内活 性均小于 25%;LaCoO₃ 温度窗口较窄且活性较差; B 位元素为 Cu 时易合成 La₂CuO₄ 层状钙钛矿,在 250 ℃时 NO_x 转化率为 45%。N₂ 选择性均随温度 升高而降低,LaFeO₃ 选择性最高而 LaMnO₃ 最低。 LaMnO₃ 具有相对更大的比表面积,和催化活性的 差异相比,比表面积的增加对 NO_x 转化的贡献有 限。进一步研究发现,LaMnO₃ 优异的脱硝性能来 自更多的 NH₃ 吸附量和丰富的硝酸盐/亚硝酸盐物 种。Shi等^[16]对LaBO₃型钙钛矿材料(B=Mn、Ni、Fe、Co)的研究表明其催化活性和还原能力无显著关系,而与NH₃吸附能力强弱呈相同规律,可以认为NH₃的吸附能力在NH₃-SCR中有着重要的作用。

不同的 A、B 位元素所构成的钙钛矿具有不同 衡,通过添加含的催化活性,而这些差异主要由其物理化学性质决 $A_{1-x}A'_{x}B_{1-y}B'_{x}$ 定,包括催化剂的比表面积、氧化还原性能、酸性位 其他元素,往往 点等。其中比表面积对催化效果的影响相对较小, 响 B 位元素的 f 氧化还原性能影响低温段 NO_x 的转化及 N₂ 选择 况更为复杂,不 性,酸性位点有利于 NH₃ 的吸附。总之,单纯 性位点。因此, ABO₃ 型钙钛矿催化剂催化活性和 N₂ 选择性不理 难区分并定性。

想,限制了其应用空间。

1.2 A_{1-x}A'_xB_{1-y}B'_yO₃ 掺杂型钙钛矿

为解决 ABO₃ 型钙钛矿催化活性较低的问题, 研究者开发了一系列 A_{1-x} A'_xB_{1-y}B'_yO₃ 掺杂型钙 钛矿(表 2)。发现只要满足容限因子 t 和电荷平 衡,通过添加含有掺杂元素前驱物的方法即可制备 A_{1-x} A'_xB_{1-y}B'_yO₃ 掺杂型钙钛矿。通过 A 位掺杂 其他元素,往往会导致晶格畸变,产生氧缺陷,并影 响 B 位元素的价态组成^[17]。而 B 位掺杂的实际情 况更为复杂,不仅表现出不同的价态,同时也作为活 性位点。因此,B 位调控对催化效果的提升原因很 难区分并定性。

催化剂 Catalyst	制备方法 Preparation method	反应条件 Reaction conditions	催化活性 Catalytic activity	选择性 Selectivity	文献 Reference
$\begin{array}{c} La_{0.9}Ce_{0.1}MnO_{3}\\ La_{0.9}Sr_{0.1}MnO_{3}\\ LaMn_{0.95}Fe_{0.05}O_{3}\\ LaMn_{0.95}V_{0.05}O_{3} \end{array}$	溶胶凝胶法 Sol-gel	1 000 μ L/L NO.1 000 μ L/L NH ₃ .6% O ₂ . Ar balance (100 mL/min).0.2 g catalyst.GHSV=30 000 m ³ /(m ³ • h)	91%,250℃ 80%,250℃ 100%,250℃ 90%,250℃	32 % 20 % 34 % 55 %	[13]
LaMn _{0.95} Ni _{0.05} O ₃ La _{0.4} Sr _{0.6} Mn _{0.9} 5Ni _{0.05} O ₃	溶胶凝胶法 Sol-gel	$\begin{array}{l} 500 \ \mu L/L \ NO, 500 \ \mu L/L \ NH_3, 5\% \ O_2, \\ N_2 \ \text{balance}, \text{GHSV}{=}20 \ 000 \ \text{m}^3/(\text{m}^3 \cdot \text{h}) \end{array}$	81%,275 ℃ 98%,175 ℃	_	[18]
$\begin{array}{l} La_{0.8}Ca_{0.2}MnO_{3}\\ La_{0.8}Sr_{0.2}MnO_{3}\\ La_{0.8}Ce_{0.2}MnO_{3}\\ LaMn_{0.8}Cu_{0.2}O_{3}\\ LaMn_{0.8}Cu_{0.2}O_{3}\\ LaMn_{0.8}Co_{0.2}O_{3}\\ LaMn_{0.8}Fe_{0.2}O_{3}\\ \end{array}$	溶胶凝胶法 Sol-gel	500 μ L/L NO, 500 μ L/L NH ₃ , 4% O ₂ , N ₂ balance, GHSV=30 000 m ³ /(m ³ · h)	50%.200 °C 80%.200 °C 86%.200 °C 70%.200 °C 73%.200 °C 80%.200 °C	_	[15]
$\begin{array}{l} La_{0,8}Sr_{0,2}Fe_{0,9}Rh_{0,1}O_{3}\\ La_{0,8}Sr_{0,2}FeO_{3}\\ La_{0,8}Sr_{0,2}Co_{0,9}Rh_{0,1}O_{3}\\ La_{0,8}Sr_{0,2}CoO_{3}\\ La_{0,8}Sr_{0,2}Mn_{0,9}Rh_{0,1}O_{3}\\ La_{0,8}Sr_{0,2}MnO_{3}\\ \end{array}$	微乳液法 Micro-emulsion	500 μ L/L NO, 500 μ L/L NH ₃ , 10% O ₂ , Ar balance (40 mL/min), 0.06 g catalyst	90%,200℃ 41%,200℃ 75%,250℃ 无活性 Inactive 57%,250℃ (85%,400℃) 48%,250℃ (2%,400℃)	_	[19]

表 2	用于 NH₃-SCR 的 A₁-ѫA′ ѫBュ-ッB′ ッO₃ 掺杂型钙钛矿催化剂	
Table 2	Examples of A_1 , A' , B_2 , B' , O_2 , doned nerovskite catalysts for NH ₂ -SC	

1)非贵金属掺杂型钙钛矿。非贵金属掺杂型钙 钛矿指 A 位元素为稀土金属或半径较大的碱金属, B 位元素为过渡金属的 A_{1-x} A'_x B_{1-y} B'_y O₃ 钙钛矿。 A、B 位离子掺杂可以导致钙钛矿产生晶格缺陷或 B 位离子的多价态存在,改变其氧化还原性能以及活 性吸附位点性质,从而影响催化活性。

Zhang 等^[13]以 LaMnO₃ 钙钛矿为基础,分别制 备了在 A 位掺杂 Sr、Ce 且 B 位掺杂 Fe、V 的钙钛 矿材料。发现掺杂修饰没有改变催化活性的整体趋 势,归因于较高温度下 NH₃ 的直接氧化而非参与 NO的选择性催化还原反应。A 位掺杂 Ce 可显著 提高 NO 转化率和 N₂ 选择性。B 位掺杂 Fe 时,可 以在 250~300 ℃观察到 100%的 NO 转化率,同时 N₂ 选择性也略有提高。掺 V 样品仅在 250 ℃下 NO 转化率有所提高,但 N₂ 选择性显著提升至 60%。XPS 和 H₂-TPR 分析发现不同金属阳离子 的掺杂可以改变其氧化还原性能和吸附氧含量。而 原位红外吸附实验发现阳离子掺杂在不同程度上抑 制了亚硝酸盐/硝酸盐的累积量,而累积量越少, NO 转化率越高。Yang 等^[15]研究了一系列 $La_{1-r}A_rMn_{1-r}B_rO_3$ (A = Ca, Sr 和 Ce, B = Cu, Co 和 Fe,x = 0/0.2,y = 0/0.2)钙钛矿型催化剂同时催 化还原 NO, 和氧化 Hg 的能力,发现所有掺杂均导 致吸附氧的含量增加,但吸附氧含量的增加并不一 定对 NO, 催化还原有利。其中 Ce 掺杂催化活性 提升最为显著。Mn 元素是催化反应的主要活性 位,Ca 掺杂后引起了催化剂表面的 Mn 含量降低, 催化活性明显降低。只有 Ce 和 Sr 掺杂后引起了 Mn 元素价态分布显著变化, Mn⁴⁺/Mn³⁺比值明显 增加,推测更多高价态 Mn 离子有利于催化反应中 的氧化还原循环,从而提高了催化活性。阿荣塔 娜等^[18]的研究表明 Sr 掺杂可以增加酸性位点, 提升 NH₃ 吸附能力和活化效果,从而显著提高 LaMnO₃型钙钛矿的催化效果,但掺杂比例过高 可能导致表面活性位点被覆盖,反而降低 NO_x 转化率。

上述研究表明,对于钙钛矿材料,通过掺杂改性 可以调控其氧化还原能力、吸附氧含量、酸性位点等 性能,从而影响多价态金属阳离子的形成,有利于氧 化还原循环,中间产物的形成与累积和 NH。的吸附 与活化过程,从而提高催化性能。在低温区间,催化 剂较强的氧化还原能力有利于 NO 转化率的提高; 而在高温区间,催化剂已具备足够的氧化还原能力, 反应活性的高低取决于吸附态 NH。和亚硝酸盐/硝 酸盐累积量。另外,较低的氧化还原能力可能会通 过抑制 NO 和 NH。的非选择性氧化而导致更高的 N₂ 选择性。

2)贵金属掺杂型钙钛矿。贵金属(Au, Pt, Pd, Rh, Ru)在催化反应中具有优良的性能,但在高温情 况下容易烧结,而将其掺入钙钛矿型催化剂,利用钙 钛矿出色的热稳定性可有效稳定并分散贵金属,二 者协同作用表现出更好的催化活性。Wallin等^[19] 通过微乳液法合成了掺杂 Rh 的 La_{0.8} Sr_{0.2} $M_{1-x}Rh_xO_3$ 催化剂(M=Mn、Co、Fe, x = 0 或 0.1), 活性测试结果表明 La_{0.8} Sr_{0.2} Fe_{0.9} Rh_{0.1}O₃ 相比于未 掺杂样品在低温区(200 ℃)和高温区均表现出优异 的反应活性(约 90%)。但由于合成方法中表面活 性剂中含有钾,在后续处理中钾未被清除,所以无法 推断催化性能的提升是由于不同的 B 位金属掺杂 还是样品中残留的钾所致。在 H₂-SCR 和 HC-SCR 领域贵金属掺杂钙钛矿材料有诸多研究^[20-21],并取 得了良好的催化活性,但由于贵金属优异的氧化还 原性能导致 NH₃ 易直接氧化为 NO_x,阻碍了 NH₃-SCR 反应的进行。因此,贵金属掺杂型钙钛矿材料 在 NH₃-SCR 领域报道较为匮乏。

1.3 负载型钙钛矿

为了进一步提高钙钛矿的 NH₃-SCR 催化活性,将其负载到其他载体上,借助载体较大的比表面积分散钙钛矿,暴露更多催化反应位点,同时也可以降低催化剂的使用量,降低成本。负载型钙钛矿催化剂的研究情况见表 3。

Zhang 等^[13] 使用浸渍法将 LaMnO₃ 分别负载 在 CeO_2 和 TiO_2 表面,结果表明负载在 CeO_2 上 后,对 NO 的氧化能力明显增强,催化活性得到了显 著提升,在 200~300 ℃,NO_x 转化率保持 90%以 LaMnO₃ 表现出较低的氧化还原性能,较低的亚硝 酸盐/硝酸盐的累积量以及最高的 NH₃ 吸附量,在 200~300 ℃内 NO_x 转化率在 70% 以上,并在 250 ℃以上表现出优于负载于 CeO₂ 样品的 N₂ 选 择性。对此,Zhang等^[13]指出较低的氧化还原能力 可能会通过抑制 NO 和 NH。的非选择性氧化而导 致更高的 N₂ 选择性。Li 等^[22]研究了负载在 ATP 上的 La_{1-r}Ce_r MnO₃ ($x = 0 \sim 0.2$) 型钙钛矿的低温 NH₃-SCR 反应活性。结果表明,当 Ce 掺杂比例为 0.1 时,NO的转化率最高达到 98.6%,进一步提高 Ce的掺杂比例时 NO 的转化率反而下降,通过 XRD 和拉曼图谱发现产生了 CeO₂ 相,阻碍了 NH₃ 的吸附,从而降低了 NO 转化率。通过表征分析发 现,NH₃吸附量和催化活性趋势一致,可以认为催 化活性的提升主要来源于酸性位点的增加。同时 ATP 载体的微孔结构提供了高表面积,有利于纳米 钙钛矿颗粒的分散以及反应气体的吸附(图 2)。 Wang 等^[23]将 LaFeO₃ 负载在活性焦上,仅通过4% 的负载量,便在400℃下达到了90%脱硝活性。结 果表明少量的 LaFeO₃ 负载即可带来大量的酸性 位点和丰富的活性氧物种,有利于中高温下 NO_x 的去除。同时,活性焦热解产生的 CO 在反应前 40 min 能够促进 NO_x 的去除,反应 40 h 后催化剂 活性仍保持 87.5%。

催化剂 Catalyst	制备方法 Preparation method	反应条件 Reaction conditions	催化活性 Catalytic activity	选择性 Selectivity	文献 Reference
LaMnO ₃ /CeO ₂ LaMnO ₃ /TiO ₂	溶胶凝胶法/ 浸渍法 Sol-gel/ impregnation	1 000 μ L/L NO,1 000 μ L/L NH ₃ ,6% O ₂ ,Ar balance(100 mL/min),0.2 g cat- alyst,GHSV=30 000 m ³ /(m ³ • h)	100%,200 ℃ 92%,300 ℃	60% 70%	[13]
$\begin{array}{l} LaMnO_{3}/ATP\\ La_{0.9}Ce_{0.1}MnO_{3}/ATP \end{array}$	溶胶凝胶法/ 浸渍法 Sol-gel/ impregnation	1 000 μ L/L NO, 1 000 μ L/L NH ₃ , 3% O ₂ , N ₂ balance(2 000 mL/min), GHSV= 25 000 m ³ /(m ³ • h)	70%,250℃ 98%,250℃	_	[22]
LaMnO3/ATP LaNiO3/ATP LaFeO3/ATP LaCoO3/ATP	溶胶凝胶法/ 浸渍法 Sol-gel/ impregnation	1 000 μL/L NO,1 000 μL/L NH ₃ ,3% O ₂ ,N ₂ balance(2 000 mL/min),GHSV= 25 000 m ³ /(m ³ • h)	81%,250 ℃ 60%,250 ℃ 45%,250 ℃ 35%,250 ℃	_	[16]
4% Fe _{0.3} La _{0.7} O _{1.5} / 活性焦 4% Fe _{0.3} La _{0.7} O _{1.5} / Active coke	溶胶凝胶法/ 浸渍法 Sol-gel/ impregnation	1 000 μ L/L NO,1 000 μ L/L NH ₃ ,8% O ₂ , N ₂ balance (470 mL/min), 2.5 g catalyst,GHSV=8 000 m ³ /(m ³ · h)	90%,400℃	_	[23]

表 3 用于 NH₃-SCR 的负载型钙钛矿催化剂

Table 3 Examples of supported perovskite catalysts for NH₃-SCR

上述研究表明,将钙钛矿催化剂负载于载体上, 可以将催化剂分散均匀,暴露出反应位点,以较小的 催化剂负载量即可获得较高的催化活性;借助载体 的酸性位点,增强对 NH。的吸附,从而提高催化活 性;同时,钙钛矿催化剂负载于载体上可以改变氧化 还原能力,提高中高温区间 N₂ 选择性。

1.4 钙钛矿在 NH₃-SCR 领域的新进展

钙钛矿材料属于 p 型半导体,具有较窄的带隙 和良好的可见光响应,已经有大量钙钛矿太阳能电 池材料和钙钛矿在其他光催化领域的研究。而光催 化技术在脱硝领域的研究应用逐渐引起研究者们重 视,更多研究结果表明光催化辅助 SCR 技术拥有宽 广的应用前景。

李霞章课题组^[24-28]近几年在钙钛矿材料用于光 催化辅助 NH₃-SCR 领域做出了大量研究。利用溶 胶凝胶法制备了一系列具有不同掺杂比例的 Fe₂O₃/SmFeO₃/ATP,用于低温光催化辅助 NH₃-SCR 反应^[27]。结果表明,添加铁离子可以形成具有 高氧化还原特性的 Z-scheme 型的 Fe₂O₃/SmFeO₃ 异质结,并有效抑制硫酸根的生成。而对 Pr_{1-x}Ce_xFeO₃/坡缕石(Pal)纳米复合材料的研究发 现^[28],在该研究体系下,NH₃ 吸附占非主导地位, 而光催化作用对 NO 的转化起到了重要的促进作 用。Ce 掺杂量超过 0.05 时,形成了 Pr_{1-x}Ce_xFeO₃/

31

CeO₂紧密的直接 Z-scheme 型异质结,促进了电子 和空穴的分离,同时保留了高氧化位点的空穴,产生 更多电荷载流子,有利于 NO 还原为 N₂。Zhang 等^[29]通过在含钛炉渣中添加5% MnO₂和 Na₂CO₃ 进行原位改性重整,转化为 99% 的钙钛矿 $CaTi_{1-x}Mn_xO_{3-3}$ 和1%的六镁锰(IV)氧化物,该催 化剂在 300 ℃下光催化辅助时 NO_x 转化率超过 93%,无光时降为48%。通常,由于光激发电子和 空穴的复合作用,光催化活性随温度升高而降低,在 该体系中未观察到此现象,表明光热催化是可能的 反应过程。炉渣和商用 CaTiO。在低于 250 ℃时 NO转化率低于5%,可以认为纯CaTiO₃和炉渣均 不是反应活性中心。Mn 掺杂显著影响了该催化剂 的光催化 NH₃-SCR 活性,炉渣在改性重整后也表 现出更多的酸性位点,通过增强 NH。吸附的方式有 效促进了催化活性的提高。

在光催化辅助 NH₃-SCR 反应中,钙钛矿催化 剂以其结构稳定、易改性和易形成异质结的优点,表 现出优异的催化性能。但较低的反应空速和较为复 杂的光热催化体系装置制约了其广泛应用。如何获 得更高的氧化还原电势,以及光热协同催化反应的 机制也有待深入研究。

2 反应机制研究

设计合理的催化剂对钙钛矿材料在 NH₃-SCR 领域应用的发展至关重要,很大程度上取决于对催 化反应机制及反应路径的理解。NH₃-SCR 技术主 要包括以下反应过程^[30]:

$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$	(1)
$6\mathrm{NO}\!+\!4\mathrm{NH}_3\!\rightarrow\!5\mathrm{N}_2\!+\!6\mathrm{H}_2\mathrm{O}$	(2)

$$6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O$$
 (3)

$$NO_2 + 4NH_3 + O_2 \rightarrow 3N_2 + 6H_2O$$
 (4)

$$2NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O \tag{5}$$

反应过程(1)是 SCR 中的主要反应,定义为"标 准 SCR"反应,在中高温反应中占主导地位。当 NO₂ 和 NO 等比例存在时,发生"快速 SCR"反应 (式 5),在 200 ℃以上时反应速率比反应(1)快 10 倍^[32]。

NH₃-SCR 反应中往往会因为氧气过量或者反 应温度过高,产生 NH₃ 非选择性氧化的副产物 N₂O(属于一种温室气体,应尽量避免其产生)。当 SO₂和 H₂O 存在时,则会发生不利反应^[32],生成硫 酸盐类物质,污染脱硝系统中的空气预热器,并覆盖 在催化剂表面,导致催化剂中毒失活,最终引起整个 脱硝系统运行失败。另外,烟气中的碱金属、Cl、P 和 Hg 等有害物质都可能使催化剂中毒失活。

对于NH₃-SCR反应来说,决定其反应速率及 活性的关键步骤是反应物在催化剂表面的吸附,而 根据氮氧化物在反应过程中吸附状态的不同,该催 化反应分为 2 种机制(图 3)^[4]:(1)Eley-Rideal(E-R)机制:首先,NH₃吸附在L酸位点或B酸位点 上,然后被吸附活化的 NH₃ 物种直接与气态 NO 反 应,生成活性中间体 NH₂NO/NH₃NO,随后分解为 N₂ 和 H₂O。同时,高价氧化还原位点还原成较低 的化合价,可以被 O₂ 再氧化以完成氧化还原循环。 (2) Langmuir-Hinshelwood(L-H)机制:NH3 吸附 在酸性位点上形成 NH⁺ 离子, NO 被高价氧化还 原位点氧化形成具有活性的双齿硝酸盐/桥式硝酸 $\pm/单齿 亚 硝 酸 盐, 后 者 与 NH_4^+ 反 应 形 成$ NH_4NO_2/NH_4NO_3 ,随后分解为 N₂ 和 H₂O。同 时,高价氧化还原位点还原成较低的化合价,可以被 O₂ 再氧化以完成氧化还原循环。Zhang 等^[12]提出 了一种低温下 NO 和 NH₃ 在 LaMnO₃ 催化剂上进 行 SCR 反应的 L-H 机制:首先气态 NH₃ 和 NO 分 别以 NH⁺ 离子和亚硝酰基物种的形式吸附在 LaMnO₃表面,随后被氧化成亚硝酸盐和硝酸盐。 最后 NH⁺ 离子与活性亚硝酸盐反应生成不稳定的 亚硝酸铵,最终产生 N₂。研究者认为这 2 种机制在 SCR 反应中同时存在^[33],而不同的反应温度、还原 剂和催化剂都可能导致某一种机制占主导地位。需 要注意的是,在钙钛矿 NH₃-SCR 脱硝领域,机制研 究还比较浅显,而不同体系的钙钛矿材料催化过程 也不尽相同,迄今为止尚未达成共识。

Fig.3 The NH₃-SCR reaction pathway over metal oxide^[4]

在 NH₃-SCR 反应中,NH₃ 吸附活化和活性位 点的氧化还原循环是 2 个重要过程,研究催化剂的 氧化还原性质和酸性位点对追踪反应过程至关重 要。通常,催化剂的氧化还原性质和表面酸性位点 分别决定了低温和高温活性^[34]。优异的氧化还原 能力可以产生活性 NH₂和 NO₂,分别通过 E-R 机 制和"快速 SCR 反应"提高反应效率,但过强的氧化 还原性能会导致 NH₃或者反应中间物种的脱氢,产 生 NH 物种,从而降低 NH₃-SCR 活性及 N₂选择 性。较强的酸性位点有利于形成吸附态NH₃/NH⁺ 物种,是形成 NH₂物种和随后与活性亚硝酸盐/硝 酸盐反应的先决条件。因此,这两部分的研究对于 提高反应活性、拓宽反应温度窗口有着重要意义。

Zhang 等^[11] 通过 DFT 计算 BiMnO₃ 和 LaMnO3 的原子电荷,发现 BiMnO3 中 O 的平均 Bader 和 Voronoi 电荷均小于 LaMnO3,同时 Bi 的电负性 明显大于 La。较小的 O 电荷和较高的电负性带来 了更强的酸性,促进 NH₃ 在 BiMnO₃ 上的吸附和活 化,从而增加了低温 NH₃-SCR 活性。Zhang 等^[13] 的研究表明,在NO氧化受限制的低温区域,负载于 CeO₂上锰基钙钛矿较强的氧化还原能力有助于催 化活性的提高,但在高温区域则会通过促进 NO 和 NH₃的非选择性氧化降低反应的 N₂ 选择性。将催 化剂负载于 TiO₂ 上,则获得较低的氧化还原能力 和较高的 NH₃ 吸附性能,显著提升 N₂ 选择性的同 时获得较高的 NO_x 催化活性。同时原位红外表征 表明,NH。不仅作为还原剂与 NO,反应,而且在 NH₃-SCR 反应中起到了抑制亚硝酸盐/硝酸盐积 累,诱导活性单齿硝酸盐生成的作用,有助于 NH₃-SCR 反应的进行。Wang 等^[23]指出 LaFeO₃ 钙钛矿 在氧化还原反应中,铁离子可以改变自身的氧化态, 通过电荷补偿效应在结构中形成氧空位,钙钛矿结 构中形成的氧空位有助于离子和电子的迁移,从而 提高 NH₃-SCR 活性。对于钙钛矿催化剂,通过合 理的掺杂取代和负载,增加酸性位点,增强 NH₃吸 附,减少亚硝酸盐/硝酸盐的积累,并适度控制氧化 还原能力,可有效降低副反应发生,促进NH₃-SCR 反应的进行。同时,通过 DFT 理论计算,结合原位 红外实验观测,研究反应路径,为催化剂设计及催化 反应机制分析提供有力支持。

3 结论及展望

钙钛矿材料在 NH₃-SCR 领域的研究极具前 景,近年来国内外学者进行了广泛研究。一般将钙 钛矿材料作为活性组分,利用其稳定的结构,进行掺 杂改性,对氧化还原能力和酸性位点进行调控,以增 强其 NO_x 转化率和 N₂ 选择性。同时,也可通过负 载至其他载体或与其他组分复合的方式,合成具有 更大有效反应面积和更多活性位点的新型催化剂。 此外,由于钙钛矿材料的组成多样性和制备方法的 差异,以及 SCR 反应过程活性中间产物的复杂性, 各研究者对反应机制的认知以及活性位点的确定还 没有统一的认知,亟需研究者构建合理的模型,与理 论计算结合,从原理层面为钙钛矿催化剂材料的设 计开发提供理论基础。

钙钛矿型催化剂虽然具有良好的脱硝活性,但 是进入实际应用还有一段距离。其比表面积和孔径 普遍较小,限制了有效活性氧物种和酸性位点的数 量,而活性和选择性较高的催化剂温度窗口较窄,低 温活性优异的催化剂存在选择性较差的问题,难以 推广到实际应用中,有待研究者进一步研究。应当 指出的是,提高 N₂ 选择性是研究钙钛矿型催化剂 关键所在,尤其是 Mn 基钙钛矿材料,其低温 NO, 转化率高,但 N₂选择性随温度升高迅速下降,转化 为 N₂O 对环境危害更大,将 NO₂ 转化为 N₂ 对实 际应用来说至关重要。在实际应用中,抗毒性能和 稳定性是催化剂的另一大挑战,硫酸盐在催化剂表 面的沉积、H₂O 在反应中的竞争吸附、重金属中毒 等都严重影响催化剂的寿命和活性。另外,针对目 前 NH₃-SCR 催化剂的研究都将活性测试的烟气条 件设置为模拟燃煤电厂烟气,但对炼钢厂、玻璃窑 炉、硝酸厂等领域废气却少有研究。这些问题都极 大影响了钙钛矿材料在 NH₃-SCR 领域的应用,而 这也是未来需要研究人员重视的方向。

参考文献 References

- [1] 中国环境科学研究院,国电环境保护研究院.火电厂大气污染物排放标:GB 13223-2011 [S].北京:中国标准出版社,2012. Chinese Research Academy of Environmental Sciences,Guodian Environmental Protection Research Institute. Emission standard of air pollutants for thermal power plants: GB 13223-2011[S]. Beijing: Standards Press of China,2012 (in Chinese).
- [2] 中国汽车技术研究中心,中国环境科学研究院.轻型汽车污染物排放限值及测量方法(中国第五阶段):GB 183525—2013
 [S].北京:中国标准出版社,2013. China Automotive Technology and Research Center, Chinese Research Academy of Environmental Sciences. Limits and measurement methods for emissions from light-duty vehicles(CHINA 5):GB 183525—2013[S]. Beijing:Standards Press of China,2013(in Chinese).

- [3] 中国汽车技术研究中心,中国环境科学研究院.轻型汽车污染物排放限值及测量方法(中国第六阶段):GB 183526—2016
 [S].北京:中国标准出版社,2016. China Automotive Technology and Research Center, Chinese Research Academy of Environmental Sciences. Limits and measurement methods for emissions from light-duty vehicles(CHINA 6):GB 183526—2016 [S]. Beijing:Standards Press of China,2016(in Chinese).
- [4] HAN L P, CAI S X, GAO M, et al. Selective catalytic reduction of NO_x with NH₃ by using novel catalysts:state of the art and future prospects[J]. Chemical reviews, 2019, 119(19):10916-10976.
- [5] 刘福东,单文坡,石晓燕,等.用于 NH₃ 选择性催化还原 NO 的非钒基催化剂研究进展 [J].催化学报,2011,32(7):1113-1128. LIU F D,SHAN W P,SHI X Y,et al. Research progress in vanadium-free catalysts for the selective catalytic reduction of NO with NH₃[J]. Chinese journal of catalysis,2011,32(7): 1113-1128 (in Chinese with English abstract).
- [6] ZHU H Y, ZHANG P F, DAI S. Recent advances of Lanthanum-based perovskite oxides for catalysis[J]. ACS catalysis, 2015,5(11):6370-6385.
- [7] ROYER S, DUPREZ D, CAN F, et al. Perovskites as substitutes of noble metals for heterogeneous catalysis:dream or reality[J]. Chemical reviews, 2014, 114(20):10292-10368.
- [8] JABŁONSKA M.PALKOVITS R. Perovskite-based catalysts for the control of nitrogen oxide emissions from diesel engines [J]. Catalysis science & technology,2019,9(9):2057-2077.
- [9] PENA M A, FIERRO J L G. Chemical structures and performance of perovskite oxides[J]. Chemical reviews, 2001, 101(7): 1981-2018.
- [10] FORZATTI P. Present status and perspectives in de-NO_x SCR catalysis[J]. Applied catalysis A:general,2001,222(1/2):221-236.
- [11] ZHANG Y B.WANG D Q.WANG J.et al. BiMnO₃ perovskite catalyst for selective catalytic reduction of NO with NH₃ at low temperature [J]. Chinese journal of catalysis, 2012, 33(9/10): 1448-1454.
- [12] ZHANG R D, LUO N, YANG W, et al. Low-temperature selective catalytic reduction of NO with NH₃ using perovskitetype oxides as the novel catalysts[J]. Journal of molecular catalysis A:chemical,2013,371:86-93.
- [13] ZHANG R D, YANG W, LUO N, et al. Low-temperature NH₃-SCR of NO by lanthanum manganite perovskites: effect of A-/B-site substitution and TiO₂/CeO₂ support[J]. Applied catalysis B:environmental,2014,146:94-104.
- [14] ZHANG S B.ZHAO Y C.DIAZ-SOMOANO M.et al. Synergistic mercury removal over the CeMnO₃ perovskite structure oxide as a selective catalytic reduction catalyst from coal combustion flue gas[J]. Energy & fuels, 2018, 32 (11): 11785-11795.
- [15] YANG J P,ZHANG M G,LI H L,et al. Simultaneous NO reduction and Hg⁰ oxidation over La_{0.8}Ce_{0.2} MnO₃ perovskite catalysts at low temperature[J]. Industrial & engineering chemis-

try research, 2018, 57(29): 9374-9385.

- [16] SHI H Y,LI X Z,XIA J W,et al. Sol-gel synthesis of LaBO₃/ attapulgite (B=Mn,Fe,Co,Ni) nanocomposite for NH₃-SCR of NO at low temperature[J]. Journal of inorganic and organometallic polymers and materials,2017,27(S1):166-172.
- [17] ZHU J J,YANG X G,XU X L, et al. Effect of strontium substitution on the activity of $La_{2-x} Sr_x NiO_4(x=0.0-1.2)$ in NO decomposition[J]. Science in China series B; chemistry, 2007, 50(1):41-46.
- [18] 阿荣塔娜,李永红,李晓良. 钙钛矿型催化剂 La_{1-x}Sr_x Mn_{0.95} Ni_{0.05}O₃ 氨气选择性催化还原 NO[J]. 化工进展,2014,33(4): 930-934. A R T N,LI Y H,LI X L. Perovskite-type catalyst La_{1-x}Sr_x Mn_{0.95} Ni_{0.05} O₃ ammonia selective catalytic reduction of NO[J]. Chemical industry and engineering progress,2014, 33(4):930-934 (in Chinese with English abstract).
- [19] WALLIN M, CRUISE N, KLEMENT U, et al. Preparation of Mn, Fe and Co based perovskite catalysts using microemulsions
 [J]. Colloids and surfaces A: physicochemical and engineering aspects, 2004, 238(1/2/3):27-35.
- [20] ZHANG R D, ALAMDARI H S, KALIAGUINE S. Water vapor sensitivity of nanosized La (Co, Mn, Fe)_{1-x} (Cu, Pd)_x O₃ perovskites during NO reduction by C₃H₆ in the presence of oxygen[J]. Applied catalysis B; environmental, 2007, 72(3/4); 331-341.
- [21] DACQUIN J P,CABIÉ M,HENRY C R, et al. Structural changes of nano-Pt particles during thermal ageing: support-induced effect and related impact on the catalytic performances [J]. Journal of catalysis,2010,270(2):299-309.
- [22] LI X Z, YIN Y, YAO C, et al. La_{1-x}Ce_xMnO₃/attapulgite nanocomposites as catalysts for NO reduction with NH₃ at low temperature[J]. Particuology.2016.26:66-72.
- [23] WANG J Q, LU P, SU W, et al. Study on the denitrification performance of Fe_x La_yO_z/activated coke for NH₃-SCR and the effect of CO escaped from activated coke at mid-high temperature on catalytic activity[J]. Environmental science and pollution research, 2019, 26(20):20248-20263.
- [24] LI X Z, YAN X Y, ZUO S X, et al. Construction of LaFe_{1-x}Mn_xO₃/attapulgite nanocomposite for photo-SCR of NO_x at low temperature[J]. Chemical engineering journal, 2017,320:211-221.
- [25] LI X Z.SHI H, WANG T, et al. Visible light driven Z-scheme Fe₂O₃/SmFeO₃/palygorskite nanostructure for photo-SCR of NO_x[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 89:119-128.
- [26] LI X Z.SHI H.ZHU W.et al. Nanocomposite LaFe_{1-x}Ni_xO₃/ palygorskite catalyst for photo-assisted reduction of NO_x: effect of Ni doping [J]. Applied catalysis B: environmental, 2018.231:92-100.
- [27] LI X Z, YAN X Y, LU X W, et al. Photo-assisted selective catalytic reduction of NO by Z-scheme natural clay based photocatalyst:insight into the effect of graphene coupling[J]. Journal of catalysis, 2018, 357;59-68.

- [28] LI X Z,SHI H,YAN X,et al. Rational construction of direct Zscheme doped perovskite/palygorskite nanocatalyst for photo-SCR removal of NO:insight into the effect of Ce incorporation [J]. Journal of catalysis,2019,369:190-200.
- [29] ZHANG Z,LU H,LI X Z, et al. Conversion of $\operatorname{CaTi}_{1-x} \operatorname{Mn}_x \operatorname{O}_{3-\operatorname{delta}}$ based photocatalyst for photocatalytic reduction of NO via structure-reforming of Ti-bearing blast furnace slag[J]. ACS sustainable chemistry & engineering.2019.7(12):10299-10309.
- [30] PARVULESCU V I, GRANGE P, DELMON B. Catalytic removal of NO[J]. Catalysis today, 1998, 46(4):233-316.
- [31] KOEBEL M, ELSENER M, MADIA G. Reaction pathways in the selective catalytic reduction process with NO and NO₂ at low temperatures [J]. Industrial engineering chemistry re-

search,2001,40(1):52-59.

- [32] 李俊华,杨恂,常化振.烟气催化脱硝关键技术研发及应用
 [M].北京:科学出版社,2015. LIJH,YANGX,CHANGH
 Z. Development and application of key technologies for flue gas catalytic denitrification [M]. Beijing: Science Press, 2015 (in Chinese).
- [33] YANG S J,LI J H,WANG C Z,et al. Fe-Ti spinel for the selective catalytic reduction of NO with NH₃: mechanism and structure-activity relationship[J]. Applied catalysis B:environmental,2012,117/118:73-80.
- [34] TANG C J, ZHANG H L, DONG L. Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH₃
 [J]. Catalysis science & technology, 2016, 6(5):1248-1264.

Perovskite catalysts for selective catalytic reduction of NO_x with NH_3

TUO Kai^{1,2,3}, ZHANG Peng^{1,2,3}, WANG Li³, HUANG Yu^{1,3}

 Institute of Earth Environment, Chinese Academy of Sciences, State Key Laboratory of Loess and Quaternary Geology, Xi'an 710061, China;
 China University of Chinese Academy of Sciences, Beijing 100049, China;
 Key Laboratory of Aerosol Chemistry and Physics, Chinese Academy of Sciences, Xi'an 710061, China

Abstract Ammonia selective catalytic reduction of nitrogen oxides (NO_x) technology with V_2O_5 - $WO_3(MoO_3)/TiO_2$ as the core catalyst is currently widely used. But it has many problems such as narrow and high-temperature window, easy to poison by alkali inactivation, vanadium's biological toxicity and secondary pollution to the environment, which require researchers to develop new efficient and environmentally friendly catalyst systems. Due to their unique structure, good stability and environmentally friendly characteristics, perovskite materials have become a research hotspot in the field of selective catalytic reduction of NO_x . We reviewd the research progress of perovskite NH_3 -SCR catalysts at home and abroad in recent years, and comprehensively discussed the main types, denitrification activity and structure-activity relationship of perovskite catalysts. At the same time, the research progress of perovskite in the new field of photo photo-assisted SCR technology was introduced. In addition, we summarized the research on the NH_3 -SCR reaction mechanism of perovskite catalysts, and prospect the possible future development directions and research goals of this field.

Keywords ammonia selective catalytic reduction; perovskite; catalysts; denitrification activity; NO_x; NH₃-SCR mechanism; air pollution control

(责任编辑:赵琳琳)