孙明禄,李解元,董帆. Bi 系光催化材料结构调控方法及其在环境能源领域的应用研究进展 [J].华中农业大学学报,2020,39(5):17-25. DOI:10.13300/j.cnki.hnlkxb.2020.05.003

Bi 系光催化材料结构调控方法及其在环境能源领域 的应用研究进展

孙明禄¹,李解元²,董帆^{1,2}

1.重庆工商大学环境与资源学院,重庆 400067; 2.电子科技大学基础与前沿研究院,成都 611731

摘要 Bi系光催化材料是近年来被广泛研究的一类新型光催化剂,具有独特的层状结构和合适的带隙,价导带位置可调,是一类性能优异、环境友好型、结构可调的光催化剂,在环境与能源领域具有广阔的应用前景。 本文介绍了 Bi系光催化材料的种类,系统综述了形貌调控、表面缺陷引入、晶面构建、表面等离子体修饰、元素 掺杂、构建异质结等结构调控方法,分析了光催化性能增强作用机制,并重点总结了铋系光催化材料在水处理、 空气净化、固氮、产氢等环境净化和能源转化领域的应用研究进展,最后讨论了该领域所面临的挑战,并对 Bi系 光催化材料未来的发展进行了展望。

```
关键词 Bi系光催化材料;光催化;结构调控;等离子体;环境净化;能源转化
中图分类号 O 643.36;O 644.1 文献标识码 A 文章编号 1000-2421(2020)05-0017-09
```

光催化技术作为一种绿色环保技术,利用资源 丰富的光能,可将低能量密度的太阳光转化为高能 量密度的化学能或电能,传统光催化剂如 TiO₂由于 较大的禁带宽度,只能利用有限的紫外光,量子效率 低^[1]。如何提高太阳光能的利用效率和光生电荷分 离效率是解决实际应用光催化效率较低的关键^[2]。

近年来,铋(Bi)系半导体发展成为一类独特的 新型光催化材料,光催化活性较高、稳定性好、成本 低、绿色无毒的优点使其在太阳能转化和环境修复 等领域具有广阔的应用前景。此外,它们制备操作 简单、形貌可控,作为潜在的光催化剂很有吸引力, 得到了一系列广泛的关注和研究^[3]。铋基半导体具 有独特的层状结构、合适的禁带宽度,更适合被可见 光激发。价带由 Bi 6s 和 O 2p 杂化轨道组成,从而 提升价带位置,减小半导体宽度(图 1)。与其他金 属氧化物半导体相比,Bi 系半导体是一个很有前景 的候选材料^[4]。此外,其光催化性能与物相、形貌、 结晶度、结构、尺寸、禁带宽度、比表面积、载流子分 离及迁移率等密切相关^[5-6]。

本文归纳了铋系光催化材料的种类及制备方法,综述了铋系光催化材料选择性地控制形貌和结构、引入表面氧缺陷、暴露晶面调控、表面修饰等离

子体、元素掺杂或与其他半导体构建异质结等结构 调控方法,并总结了其在水处理、空气净化、固氮、产 氢等环境能源领域的应用研究进展,同时讨论了面 临的问题并对未来发展方向进行展望。

1 铋系光催化材料的分类

1.1 一元金属铋系化合物

一元铋系光催化剂主要包括氧化铋(Bi_2O_3)和 硫化铋(Bi_2S_3)。三氧化二铋(Bi_2O_3)是最简单的铋 系化合物,不同晶相的氧化铋禁带宽度分布于 2.00~3.96 eV,是一种可见光响应光催化剂。 Bi_2O_3 的多晶型包括 α (单斜)、 β (四方)、 γ (体心立 方)、 δ (面心立方)和 ω (三斜)相。亚稳相很容易在 低温下转变为 α 相,在高温下转变为 δ 相。并且还 可进一步转化为(BiO) $_2CO_3$ ^[7],这种化学不稳定性 是 Bi_2O_3 作为光催化剂应用的主要障碍。如图 2 所 示, Bi_2S_3 具有 1.7 eV 的体相禁带宽度,可通过标准 的无氧和热注射技术^[8]制备 1D 纳米棒和 2D 纳米 片,通过溶剂热法制备 3D 类海胆球^[9]。其可在可 见光和近红外光区波段被激发,是一种理想的光吸 收材料,缺点是光生载流子极易复合。

收稿日期:2020-05-14

孙明禄,博士研究生.研究方向:大气污染控制工程.E-mail: 673000944@qq.com

基金项目:国家自然科学基金优秀青年科学基金项目(21822601);国家自然科学基金面上项目(21777011)

通信作者:董帆,博士,教授.研究方向:环境催化与大气污染控制. E-mail: dongfan@uestc.edu.cn

图 2 Bi₂S₃微球的能带结构^[9]

Fig.2 Band structure of $Bi_2 S_3$ microspheres^[9]

1.2 二元金属铋系化合物

二元铋系材料主要包括由 Bi 和其他金属组成 的复合氧化物。Bi₂MO₆(M=Cr,Mo,W)是奥里维 里斯(Aurivillius)家族中最简单的成员,其通式为 $Bi_2 A_{N-1} B_N O_{3N+3} (A = Ca, Sr, Ba, Pb, Bi, Na, K; B =$ Ti,Nb,Ta,Mo,W,Fe)。这类复合氧化物一般都具 有 Bi₂O 层和 MO₆ 八面体层交替排列构成的奥里 维里斯层状结构。Bi₂MO₆的价带和导带均由 Bi 6p、O 2p 和 M nd(Bi₂CrO₆、Bi₂MoO₆ 和 Bi₂WO₆ 的 n 值分别为 3、4 和 5) 杂化轨道组成。Bi₂ MO₆ 中,Bi₂CrO₆、Bi₂MoO₆和Bi₂WO₆的带隙分别为 2.16、2.63 和 2.77 eV^[10]。表明 Bi₂ MO₆ 化合物是 适合于可见光激发的光催化剂。Bi₂CrO₆带隙最 窄,但由于光生电子和空穴极易复合,不适合用 于光催化。正交晶系 Bi₂WO₆ 的制备方法简单, 不但具有合适的带隙,还有可控合成的形貌结 构,在可见光照射下具有良好的光催化活性,但 仍具有光生载流子复合率高的缺点。

1.3 卤氧化铋系化合物

卤氧化铋具有良好的光学性能,属于四方晶系。 BiOX 的晶体结构是由双层卤素原子交错 [Bi₂O₂] 层构成的层状结构。卤氧化铋能带结构如图 3 所 示。BiOX 的价带一般由 O 2p 和 X np(X=F、Cl、 Br 和 I,分别对应于 n=2、3、4、5)轨道参与构成,导 带主要由 Bi 6p 轨道参与组成。BiOF、BiOCl、BiO-Br 和 BiOI 的带隙分别为 3.64^[12]、3.20、2.76 和 1.77 eV^[13]。表明带隙通常随着原子序数的增加而减小。 只有紫外光可以激发 BiOF、BiOCl 光催化剂,而可 见光和近红外光都可以成功激发 BiOBr 和 BiOI 光 催化剂。因此,BiOBr 和 BiOI 由于其合适的带隙而 被经常研究。

Fig.3 Band gap structure of bismuthoxyhalide^[14]

1.4 磷酸铋和钒酸铋化合物

水热法制备的 BiPO4 的带隙约为 3.85 eV。标

准无氧工艺制备的 BiPO₄ 纳米晶体的带隙约为 4.5 eV^[15]。BiPO₄ 比 TiO₂ 的带隙更宽,但其在降解某 些有机物方面具有更快的光催化动力学。这可能是 由于 BiPO₄ 的价带位置比 TiO₂ 的价带位置高 0.3 eV(图 4)^[16],导致价带上的光生空穴氧化性更强。 BiPO₄ 的局限性主要在于可见光下无活性。钒酸铋 (BiVO₄)具有单斜角闪岩、四方锆石和四方角闪岩 3 种晶相。其中单斜相的钒酸铋带隙为 2.45 eV,与 其他 2 种晶相相比能够较好地吸收可见光^[17]。

Fig.4 Position of the energy levels of the conduction band edge (E_{CB}) and the valence band edge (E_{VB}) of BiPO₄ with respect to the NHE^[16]

1.5 碳酸氧铋和五价铋酸盐

(BiO)₂CO₃属于奥里维里斯相关氧化物家族, 具有 Bi₂O₂⁺ 层和 CO₃²⁻ 层相互交错的层状结 构^[18]。图 5 为(BiO)₂CO₃的能带结构,(BiO)₂CO₃ 的导带主要由杂化的 O 2p 和 Bi 6p 轨道组成,价带 主要由 O 2p、Bi 6p 和 C 2p 轨道组成^[18],禁带宽度 为 3.4 eV,因此,只有波长小于 365 nm 的辐照才能 激活带隙跃迁^[19]。五价铋酸盐(M(BiO₃)_N)(n=1, M = Li, Na, K, Ag; n = 2, M = Mg, Zn, Sr, Ba, Pb)通常用作制备其他 Bi 系化合物(如 BiOX)的 Bi 源。 其他 Bi 系化合物中 Bi 的价态为+3 价,而 M(BiO₃)_N中Bi的价态为+5价。这表明五价铋酸 盐具有不同的电子结构。其中,LiBiO₃、NaBiO₃、 SrBi₂O₆和 BaBi₂O₆的带隙分别为 1.80、2.60、1.93、 1.93 eV^[20],在可见光照射下,其均对亚甲基蓝和苯 酚的降解表现出较好的光催化性能[21-22]。然而,其 他铋酸盐由于 Ag、Zn 和 Pb 的 d 电子造成较宽的导 带和较差的光催化性能,使其在光催化领域的应用 受到限制。

2 铋系光催化材料的结构调控方法

2.1 形貌调控和表面缺陷引入

形貌作为光催化剂的物理性质,对催化剂的性能有重要的影响。研究者发现分层微球状 $(BiO)_2CO_3$ 比 $(BiO)_2CO_3$ 纳米颗粒或纳米片具有更高的紫外光及明显增强的可见光催化性能^[19,24-26],原因在于三维结构中入射光的强反射和散射效应使外部光吸收增强,此外,低结晶度和大的比表面积也增强了催化活性的稳定性。Chen等^[9]制备不同形貌的 Bi₂S₃纳米结构同样发现 Bi₂S₃微球具备更高的光催化还原甲醇中 CO₂ 生成甲酸甲酯(MF)的能力。

表面缺陷调控可以作为调整二维光催化剂光电 参数的一种有效手段,它可以通过调整局部表面微 观结构、电子结构和载流子浓度来实现^[27]。(1)氧 空位等缺陷调控可以优化小分子(如 O_2 、 N_2 、 H_2O 、 CO_2)的吸附和活化;(2)缺陷可以作为直接参与光 催化反应的活性位点;(3)缺陷可以调节电子结构, 影响光的吸收范围和强度;(4)缺陷可以作为电荷分 离中心,促进表面电荷分离,以提高空穴和电子在界 面氧化还原反应中的利用率。比如在光固氮过程 中,氧缺陷产生的 π 反向给电子效应可局域电子,大 大提升了量子效率和能量效率,提升了 NH₃ 的产 量^[28]。董帆等^[29]制备了黑色的含缺陷(BiO)₂CO₃, 证实了其中的活性位点为 Bi⁰、Bi⁵⁺ 和氧缺陷,其中 氧缺陷可直接活化吸附的 O₂ 分子,使得催化剂在 黑暗条件下就具有活性。此外,在 BiOCl 表面构造 氧缺陷^[30]、含缺陷钨酸铋^[31]以及在 C₃N₄ 中构造碳 缺陷^[32],均提升了光催化性能。由此可见,具有三 维多孔形貌结构的催化剂比平面结构具备更优异 的光吸收能力,从而导致更强的光催化性能,此 外,一般情况下表面缺陷的引入有助于提升光催 化活性。

2.2 晶面构建

具有不同暴露晶面的表面决定了表面特性,其 对半导体的光催化性能起到决定性作用^[33]。Li 等^[34]通过调控 BiOCl 的暴露晶面,发现(010)面暴 露 BiOCl 降解甲醛的活性远高于(001) 面暴露的 BiOCl,(010)面可使产生 CO。的选择性提高,并加 快 CO₂ 的产生速率,从而提升了 BiOCl 对甲醛的矿 化率。进一步研究表明,(010)面暴露的 BiOCl 对 甲苯降解同样表现出了优异的光催化性能。对 Bi₂O₂CO₃进行晶面调控^[35-36],结果表明,(001)面暴 露的 Bi₂O₂CO₃比(110)面暴露具有更高的光催化 活性,可归因于 NO 反应物小分子和 O_2 、 H_2O 的预 吸附活化的特异性,选择性地产生了不同中间体导 致的反应路径不同。综上所述,晶面暴露对于不同 种类的光催化剂具有特异性,对于卤氧化铋系材料, (010)面暴露性能较好;对于碳酸氧铋,(001)面暴露 具有更高的光催化活性。

2.3 表面等离子体修饰

等离子体纳米金属的 SPR 效应可以有效地将 太阳能,特别是低能(可见光和近红外)光子转化为 热电子和热来驱动化学反应[37],产生的高能电子可 被激发转移到附近半导体的导带参与光催化过程。 Au、Ag和Cu纳米颗粒在可见光照射下,都可以被 SPR 效应激活。例如, Ag/(BiO)₂CO₃^[38]、 Au/(BiO)₂CO₃^[23]具备良好的光催化性能可归因于 SPR 与 SSR 效应的协同作用和延长的载流子寿命。 与Au、Ag等贵金属相比,Bi单质金属具有制备简 单、经济的优点。2014年,董帆等[39]通过简便的化 学溶剂法制备了 Bi 纳米颗粒,直接应用其等离子体 效应去除空气中的 NO,在 280 nm 光照下,半金属 Bi 纳米颗粒表现出优异且稳定的光催化活性,同 时,还观测到了 Bi 单质具有催化"记忆",该现象可 归因于紫外光介导的表面等离子体共振和延长的活 性物种寿命,由此发现了 Bi 可替代贵金属产生 SPR 效应,进行直接的等离子体光催化作用。Li 等^[40]还 构建了 Bi 负载在不同晶面上的 BiOBr,研究表明, 受到晶面的影响,2种催化剂上的电荷传输路径不同,一般遵循从表面阳离子一等离子体金属一阴离子的电荷传输规律,这种特殊的电荷传输模式使得界面电荷分离效率、光吸收能力、活性氧物种的产生和光催化效率大大提升。综上所述,等离子体可通过 SPR 效应大大提升催化剂的光催化性能。

2.4 元素掺杂

对于能带结构来说,提高可见光敏感度就是减 小带隙。在图 1 中,导带的底部略低于或高于 H⁺/H₂的氧化还原电位,而几乎所有价带的顶部都 显著高于 O₂/H₂O 的氧化还原电位,因此,考虑到 材料的稳定性,最好调节价带以缩小带隙。主要的 方法包括掺杂 3d 过渡元素,掺杂具有 d¹⁰ 或 d¹⁰ s² 构 型的阳离子,以及掺杂非金属元素。通过掺杂 3d 过 渡元素,如 Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn 等 元素,3d 掺杂态在原来的带隙中插入了1个新的能 带,并随着掺杂原子数的增加而向低能量方向移动。 杂质能带可以看作是价带的顶部,这样可以缩小带 隙,使掺杂半导体吸收更多的可见光成为可能。然 而,这些杂质可能会增加体相缺陷,这可能是电子和 空穴的复合中心。另外,满的 3d 轨道阻碍了电子转 移。这2个因素可能会降低最终的光催化活性。对 于在价带中掺杂 d^{10} 和 d^{10} s² 构型, 如 Pd、Ag⁺、 Cd²⁺、Pb²⁺、Bi³⁺等元素,d或s轨道可以与O2p轨 道杂交,使价带顶部向上移动以缩小带隙。然而,局 域 d 态插入到带隙中会导致电子/空穴复合中心的 产生。与金属掺杂相比,非金属掺杂不仅可以减小 禁带宽度以提升可见光诱导的光催化活性,而且可 以抑制光生载流子的复合,因为非金属的 p 轨道可 以与 O 2p 轨道混合,产生掺杂复合材料价带的最 大能量^[41]。Sun 等^[42]制备的 I⁻ 层间掺杂 BiOIO₃ 证实了碘离子可扩展可见光区光响应范围,增加可 见光利用率,优化 BiOIO₃的电子结构,提升氧化能 力。通过氧化石墨烯诱导的碳掺杂引入含氧缺陷钨 酸铋^[43]可见光催化净化 NO 性能提升,掺杂的碳原 子可局域电子作为电子传输通道,降低层间电子跃 迁能垒,同时可促进活性物种的产生和吸附。此外, 多孔 Ni 掺杂 δ -Bi₂O₃^[44]、碳酸根掺杂的钼酸铋^[45] 也表现出更好的光催化净化 NO 性能。有趣的是, 在缺陷型钨酸铋中掺杂碳酸根^[46],NO 净化效率提 升原因主要在于抑制了光生电子空穴对的复合效 率,而不是提升了光响应强度,电子空穴对促进了自 由基的生成和活化。综上所述,相较于金属掺杂,非

金属掺杂是一种常用的催化剂改性方法,它可以通 过改善能带结构提升催化剂的光催化性能。

2.5 异质结构建

当选择具有不同光响应性的材料作为组分时, 形成的异质结构光催化剂可以吸收和利用太阳光谱 的很大一部分,通过适当的能带匹配,在不同组分之 间建立内部电场,可以促进空间分离,减少光生载流 子的复合。结合具有不同催化性能的材料,可以实 现同时加速氧化和还原反应;组分的独特性质如金 属粒子的等离子体效应和碳材料的高导电性,也有 利于光催化反应,异质结光催化剂被认为具有很高 的太阳能-化学能能量转换效率^[47]。Zhou 等^[48]通 讨两步法制备的 Bi₂WO₆/石墨烯纳米复合材料具 有更高的光催化NO去除率以及对于离子物种的形 成具有更好的洗择性,原因在于与石墨烯耦合后, Bi₂WO₆的光电流密度和导电性大大提升,Bi₂WO₆ 与石墨烯的界面电子相互作用导致了价带最大值下 移了 0.36 eV,宽度增大了 1 eV,实现了高效的电荷 分离和迁移率。此外,董帆等[49]首次发现绝缘体可 作为光催化剂,进一步研究发现 Bi 系光催化材料还 可与绝缘体构建异质结光催化剂,以实现绝缘体在 光催化领域的应用。如 SrCO₃-BiOI 核壳结构^[50], 在 400~600 nm 的可见光区表现出良好的光吸收 性能,SrCO₃中的O 2p 轨道和 BiOI 中的 Bi 6p 轨道 之间的共价作用提供了 SrCO₃和 BiOI 间的电子传 输通道,使得光敏剂 BiOI 中的光生电子转移到绝缘 体的导带,促进了活性物种的产生。综上所述,异质 结构建光催化剂可通过内建电场促进载流子的传 输,实现高效的光催化性能。

3 铋系光催化材料在环境与能源领域 的应用

3.1 光催化水处理

1)可见光或太阳光光催化氧化药品、染料等废 水中有机污染物。如 Bi/α-Bi₂O₃/C₃N₄由于氧缺陷 和 Bi 单质的协同作用提升了价带位置,缩小了带 隙,促进了主要光生活性物种超氧自由基的产生,极 大提升了材料降解抗生素的稳定性;利用碳量子点 掺杂 BiOI 拓展了光吸收范围,促进了关键活性物种 光生空穴的产生,从而加快了对四环素和双酚 A 的 光降 解速率。此外,N 掺杂碳量子点 BiOBr、 NiFe₂O₄/Bi₂O₃、Bi₂₄O₃₁ Br₁₀、Fe₃O₄/Bi₂WO₆等光 催化氧化水中的药物,如:四环素、环丙沙星等抗生 素,卡马西平、布洛芬和双氯芬酸以及其他全世界水 环境中常见的药品。用 NaBiO₃、Bi₁₂ O₁₅ Cl₆、 BiOBr、碳量子点/BiOBr、PbBiO₂Br、Fe₃O₄/BiOI、 自掺杂 I⁻ 的 Bi/BiOIO₃、Bi₄O₅ Br₂、Bi₂O₂CO₃、 BiVO₄、Bi₂WO₆/TiO₂/Pt 和 CuO/BiVO₄ 降解工 业微污染物双酚 A、苯酚、异丙隆、苯甲酸酯及甲 醇等^[51-52]。

2)光催化还原水中污染物。铬(Cr)是一种常见的水体污染物,对人体健康危害极大,其有效去除 具有重要意义。Bi₂₄O₃₁Br₁₀由于足够负的导带的位 置不仅可以还原水中六价铬,还可以分解水;BiOCl 由于具有良好的吸附性能对光催化还原六价铬表现 出了良好的性能。

3.2 光催化空气净化

1)空气中的 CO₂ 是造成温室效应的主要气体, 研究证实 CO₂ 可被光催化还原为 CO、甲烷等燃料 气体。如 BiOBr 通过调控暴露晶面增加了 CO₂ 的 表面吸附位点,促进了 CO₂ 的活化,实现了高效的 电荷分离效率,大大提升了 CO 的产生速率。 Cheng 等^[53]制备的 Bi₂WO₆ 空心微球可将 CO₂ 催 化转化为甲醇。Vu 等^[54]最近使用碳层介导制备了 三维 BiVO₄/碳包覆 Cu₂O 纳米线阵列 (BVO/C/ Cu₂O-NWAs) 的新型 Z 型结构。BVO/C/Cu₂O-NWAs 的 CO 产率提升至 3.01 μ mol/(h・g)。碳 层作为 Cu₂O 的保护层促进了电荷分离,经过 20 h 的反应,其光催化活性能够保持在初始活性的 98%。此外,Bi₄O₅Br₂ 等铋系材料在温和条件下也 可将空气中的 CO₂ 还原成有用的有机物等^[55]。

2)太阳光下空气中低浓度 NO_x 的氧化。如 Bi<
沉积的 Bi₂O₂CO₃^[56]、N-Bi₂O₂CO₃^[57-58]、 Pd/Pd²⁺/
(BiO)₂CO₃^[59]、 Br 掺杂的 BiOCOOH^[60]、
Bi/Bi₂MoO₆^[61]、SrTiO₃/BiOI^[62]等均表现出净化室内
空气污染物 NO_x的性能。

3)降解 VOCs。Long 等^[16]合成的纳米结构 BiPO₄ 可将气相苯光催化转化为 CO₂。Dong 等^[30] 制备的含缺陷 BiOCl 通过调控开环反应路径提高 了甲苯光催化降解的开环效率。

3.3 光催化固氮

掺杂 BiOI 拓展了光吸收范围,促进了关键活性物种 尽管氮气含量占地球大气的 78%,但由于其极 光生空穴的产生,从而加快了对四环素和双酚 A 的 强的三键作用,不能直接被生物利用,而是需要转化 光降 解 速 率。此 外, N 掺杂 碳 量 子 点 BiOBr、 为固定氮。氨(NH₃)已被证明是可储存太阳能的 NiFe₂O₄/Bi₂O₃、Bi₂₄O₃₁ Br₁₀、Fe₃O₄/Bi₂WO₆等光 可靠媒介,传统工业将氮气转化为氨需要在高温高 催化氧化水中的药物,如:四环素、环丙沙星等抗生 压的条件下进行,目前研究发现光催化可实现在温

和的条件下固氮。比如具有氧空位的卤氧化铋能促 进局域电子从氧空位向吸附的 N₂ 分子的反向转 移。反向电子转移可激活 N =N 键,导致氮气分子 键长增加从而使其被活化。用金纳米颗粒沉积的 (BiO)₂CO₃ 纳米盘能够在水中光催化还原 N₂^[63]。 然而,N₂ 分子往往很难化学吸附在贵金属表面,这 限制了固氮活性的提升。相比之下,大多数半导体 如铋系光催化剂都有表面活性位点,为 N₂ 的化学 吸附和活化提供了更多机会。因此,采用铋系半导 体材料富集表面活性位点是提高光催化固氮活性的 一条可行途径。

3.4 光催化产氢

水裂解制备清洁代用燃料氢是能源领域的研究 热点。Zhao等^[64]制备的BiOI超薄纳米片由于导 带位置上移到更高的位置使得其带边超出了 H⁺/H₂的还原电位,同时价带边缘位于O₂/H₂O 的氧化电位下方,从而有利于光催化分解水的过程。 然而铋系材料的厚度导致光吸收能力的降低,因此, 该材料仍有待改进。Lakshmana等^[65]用湿浸渍法 固定锐钛矿型TiO₂纳米结构上的Bi₂O₃团簇实 现了26.02 mmol/(h・g)产氢效率,该活性在 5个周期循环测试后仍可重复。此外,其他卤氧 化铋系^[66]等材料都在光催化分解水产氢方面表 现出良好的性能。

4 结论与展望

高效铋系光催化材料是一种优异的可见光响应 的环境友好型光催化剂,能大大提升太阳光利用率, 所需成本低廉,制备简单,使其在今后大规模的工业 化应用中具有很强的竞争力。

本文综述了一元金属铋系化合物、二元金属铋 系化合物、卤氧化铋系化合物、钒酸铋、磷酸铋、碳酸 氧铋和五价铋酸盐等铋系光催化材料的种类,以及 形貌控制与表面缺陷引入、晶面调控、表面等离子体 修饰、元素掺杂、构建异质结等结构调控方法,以从 光吸收范围和强度、反应物分子吸附和活化、催化剂 表面反应活性位点、表面能、带隙及价导带位置、量 子效率、反应活化能垒、速率控制步骤、产物选择性 等角度改善铋系光催化材料的性能。总结了铋系光 催化材料在水处理、空气净化、固氮、产氢等环境能 源领域的应用研究进展,目前的研究已经将铋系光 催化剂的活性及稳定性、选择性提升到了一个新的 高度,然而实际应用依然面临很多挑战。

根据研究现状,我们分析了亟待解决的问题并 预测了未来的研究热点,主要包括:(1)由于表征方 法的限制,催化剂中缺陷位置、浓度、类型尚不明确, 缺陷在大部分催化剂中的作用都是提升性能,然而 缺陷是否有利于所有类型催化剂仍需进一步探索。 (2)光照过程中催化剂本身的变化尚不清楚,无法确 定自身结构性质的变化是否会对催化性能产生影 响,在未来的研究工作中还需进行深入的探索,为安 全高效的光催化剂提供设计方案。(3)等离子体纳 米金属是许多催化过程的优良催化剂,现有研究大 部分是基于单组分金属,双组分金属的可行性及性 能尚未被探究,此外开发新的等离子体纳米金属是 一个非常有吸引力的但迄今为止研究较少的课题。 (4)本文所研究的铋系光催化剂具备良好的可见光 催化性能,然而在太阳光照射条件下的催化净化污 染物性能很少被探究。此外,后续的研究工作可探 究光催化剂的负载工艺,以实现产业化应用。

参考文献 References

- [1] 董兴安,何文杰,王红,等.(BiO)₂CO₃和N掺杂(BiO)₂CO₃ 分级微球可见光催化氧化NO机理的原位红外光谱[J].科学 通报,2017,62(22):2534-2543.DONGXA,HEWJ,WANG H,et al. *In situ* FTIR spectra of visible light photocatalytic oxidation mechanism of (BiO)₂CO₃ and N-doped (BiO)₂CO₃ hierachical microspheres[J]. Science bulletin, 2017, 62(22): 2534-2543(in Chinese with English abstract).
- [2] 孙艳娟,肖香,董兴安,等. BiOI@La(OH)₃ 纳米棒异质结制备 及其增强可见光催化去除 NO 性能(英文)[J]. 催化学报, 2017,38(2):217-226. SUN Y J,XIAO X,DONG X A, et al. Preparation of BiOI@La(OH)₃ nanorod heterojunction and its enhanced visible light photocatalytic removal of NO[J]. Chinese journal of catalysis,2017,38(2):217-226(in Chinese with English abstract).
- [3] 赫荣安,曹少文,余家国. 铋系光催化剂的形貌调控与表面改性研究进展[J].物理化学学报,2016,32(12):2841-2870. HE R A,CAO S W,YU J G. Progress in morphology control and surface modification of bismuth based photocatalysts[J]. Acta physico-chimica sinica, 2016, 32(12):2841-2870 (in Chinese with English abstract).
- [4] 丁星,杨祥龙,熊中亮,等. 铋系光催化剂去除环境污染物[J]. 化学进展,2017,29(9):1115-1126. DING X,YANG X L, XIONG Z L,et al. Removal of environmental pollutants by bismuth based photocatalyst[J]. Progress in chemistry,2017,29 (9):1115-1126(in Chinese with English abstract).
- [5] 董少波. 铋系光催化剂的最新研究进展[J]. 化工时刊,2019, 33(3):28-31. DONG S B. Recent research progress of bismuth

based photocatalysts[J]. Chemical industry times, 2019, 33
(3):28-31(in Chinese with English abstract).

- [6] 陈鹏,刘红婧,董帆,等.可见光诱导 Ag/AgX 等离子体光催化 净化 NO 的性能与机理[J]. 科学通报,2016,61(32):3482-3489. CHEN P,LIU H J,DONG F,et al. Photocatalytic performance and mechanism of photocatalytic removal of NO induced by Ag/AgX plasma under visible light irradiation[J]. Science bulletin, 2016,61(32): 3482-3489 (in Chinese with English abstract).
- [7] JOACHIM E, HORST K. Visible light photo-oxidations in the presence of alpha-Bi₂O₃[J]. Photochemical & photobiological sciences, 2008,7(11):1400-1406.
- [8] ZHANG H J,ZHOU X,ZHONG X. Single-crystal Bi₂S₃ nanosheets growing via attachment-recrystallization of nanorods[J]. Inorganic chemistry,2011,50(16):7729-7734.
- [9] CHEN J, SONG G, XIANG T, et al. Shape-controlled solvothermal synthesis of Bi₂S₃ for photocatalytic reduction of CO₂ to methyl formate in methanol[J]. Dalton transactions, 2013, 42(42):15133-15138.
- [10] MENG X, ZHANG Z. Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches [J]. Journal of molecular catalysis A:chemical,2016,423:533-549.
- [11] ZHANG L,ZHU Y. A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-lightdriven photocatalysts [J]. Catalysis science & technology, 2012,2(4):694-706.
- [12] SU W, HUANG Y, WANG W, et al. Synthesis and catalytic performances of a novel photocatalyst BiOF[J]. Scripta materialia,2010,62(6):345-348.
- [13] ZHANG X, ZHANG L, JIA F. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres[J]. Journal of physical chemistry C, 2008, 112:747-753.
- [14] ZHANG W, DONG F. Visible-light photocatalytic removal of NO in air over BiOX (X = Cl, Br, I) single-crystal nanoplates
 [J]. Industrial & engineering chemistry research, 2013, 52: 6740-6746.
- [15] PAN C, ZHU Y. Size-controlled synthesis of BiPO₄ nanocrystals for enhanced photocatalytic performance[J]. Journal of materials chemistry, 2011, 21(12):4235-4241.
- LONG B, HUANG J, WANG X. Photocatalytic degradation of benzene in gas phase by nanostructured BiPO₄ catalysts [J]. Progress in natural science: materials international, 2012, 22 (6):644-653.
- [17] ZHOU L, LIU S, ZHANG L, et al. A sonochemical route to visible-light-driven high-activity BiVO₄ photocatalyst[J]. Journal of molecular catalysis A:chemical.2006.252:120-124.
- [18] NI Z, ZHANG Y, DONG F. Fabrication, modification and application of (BiO)₂CO₃-based photocatalysts: a review[J]. Applied surface science, 2016, 365; 314-335.
- [19] DONG F, ZHENG A, SUN Y, et al. One-pot template-free syn-

thesis, growth mechanism and enhanced photocatalytic activity of monodisperse (BiO)₂CO₃ hierarchical hollow microspheres self-assembled with single-crystalline nanosheets [J]. CrystEngComm,2012,14(10):3534-3544.

- [20] TAKAHIRO T,RIE H,QIANG D,et al. Photocatalytic activities of various pentavalent bismuthates under visible light irradiation[J]. Journal of solid state chemistry, 2011, 184 (8): 2017-2022.
- [21] YU K, HE H, SUN C, et al. Visible light-driven photocatalytic degradation of rhodamine B over NaBiO₃ pathways and mechanism[J]. Journal of physical chemistry A, 2009, 113: 10024-10032.
- [22] CHANG X, HUANG J, CHENG C, et al. Photocatalytic decomposition of 4-t-octylphenol over NaBiO₃ driven by visible light:catalytic kinetics and corrosion products characterization [J]. Journal of hazardous materials,2010,173(3):765-772.
- [23] LI Q, HAO X, GUO X, et al. Controlled deposition of Au on (BiO)₂CO₃ microspheres: the size and content of Au nanoparticles matter[J]. Dalton transactions, 2015, 44(19):8805-8811.
- [24] XIONG T, DONG F, WU Z. Enhanced extrinsic absorption promotes the visible light photocatalytic activity of wide bandgap (BiO)₂CO₃ hierarchical structure [J]. RSC Advances, 2014,4(99):56307-56312.
- [25] DONG F,LI Q,ZHANG W, et al. Synthesis of flower-like, pinon-like and faceted nanoplates (BiO)₂CO₃ micro/nanostructures with morphology-dependent photocatalytic activity[J]. Materials chemistry and physics, 2013, 142(1), 381-386.
- [26] CEN W,XIONG T,TANG C,et al. Effects of morphology and crystallinity on the photocatalytic activity of (BiO)₂CO₃ nano/ microstructures[J]. Industrial & engineering chemistry research,2014,53(39):15002-15011.
- [27] XIONG J.DI J.XIA J., et al. Surface defect engineering in 2D nanomaterials for photocatalysis[J/OL]. Advanced functional materials, 2018, 28 (39): 1801983 [2020-05-14]. https://doi. org/10.1002/adfm.201801983.
- [28] CHENG M, XIE Y. Photocatalytic nitrogen fixation: the role of defects in photocatalysts[J]. Journal of materials chemistry A, 2019,7(34):19616-19633.
- [29] DONG F, XIONG T, SUN Y, et al. Synergistic integration of thermocatalysis and photocatalysis on black defective (BiO)₂CO₃ microspheres[J]. Journal of materials chemistry A,2015,3:18466-18474.
- [30] DONG X,CUI W,WANG H,et al. Promoting ring-opening efficiency for suppressing toxic intermediates during photocatalytic toluene degradation via surface oxygen vacancies[J]. Science bulletin.2019.64(10):669-678.
- [31] HUO W,DONG X,LI J,et al. Synthesis of Bi₂WO₆ with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study[J]. Chemical engineering journal, 2019, 361:129-138.
- [32] LI Y,GU M,SHI T, et al. Carbon vacancy in C3N4 nanotube:

electronic structure, photocatalysis mechanism and highly enhanced activity [J/OL]. Applied catalysis B: environmental, 2020,262:118281[2020-05-14]. https://doi.org/10.1016/j.ap-catb.2019.118281.

- [33] XU Y. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. American mineralogist.2000.85:543-556.
- [34] LI J.CUI W, CHEN P, et al. Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization[J/OL]. Applied catalysis B:environmental, 2020, 260:118130[2020-05-14]. https://doi. org/10.1016/j.apcatb.2019.118130.
- [35] LI J, DONG X, ZHANG G, et al. Probing ring-opening pathways for efficient photocatalytic toluene decomposition [J]. Journal of materials chemistry A, 2019, 7(7): 3366-3374.
- [36] CHEN P,SUN Y,LIU H,et al. Facet-dependent photocatalytic NO conversion pathways predetermined by adsorption activation patterns[J]. Nanoscale,2019,11(5):2366-2373.
- [37] MENG X,LIU L,OUYANG S, et al. Nanometals for solar-tochemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis[J]. Advance materials,2016,28(32);6781-6803.
- [38] DONG F,LI Q,ZHOU Y, et al. In situ decoration of plasmonic Ag nanocrystals on the surface of (BiO)₂CO₃ hierarchical microspheres for enhanced visible light photocatalysis[J]. Dalton transactions,2014,43(25):9468-9480.
- [39] DONG F,XIONG T,SUN Y,et al. A semimetal bismuth element as a direct plasmonic photocatalyst[J]. Chemical communication (Camb),2014,50(72):10386-10389.
- [40] LI J, DONG X, SUN Y, et al. Facet-dependent interfacial charge separation and transfer in plasmonic photocatalysts[J]. Applied catalysis B:environmental,2018,226:269-277.
- [41] DONG F,GUO S,WU Z, et al. Enhanced visible light photocatalytic activity of novel Pt/C-doped TiO₂/PtCl₄ three-component nanojunction system for degradation of toluene in air[J]. Journal of hazardous material.2011.187(3):509-516.
- [42] SUN Y,XIONG T,DONG F,et al. Interlayer-I-doped BiOIO₃ nanoplates with an optimized electronic structure for efficient visible light photocatalysis [J]. Chemical communication (Camb),2016,52(53):8243-8246.
- [43] SUN M, DONG X A, LEI B, et al. Graphene oxide mediated cogeneration of C-doping and oxygen defects in Bi₂WO₆ nanosheets: a combined DRIFTS and DFT investigation[J]. Nanoscale, 2019,11(43):20562-20570.
- [44] ZHU S,LU L,ZHAO Z, et al. Mesoporous Ni-Doped &-Bi₂O₃ microspheres for enhanced solar-driven photocatalysis: a combined experimental and theoretical investigation[J]. The journal of physical chemistry C,2017,121(17):9394-9401.
- [45] HUO W,XU W,CAO T, et al. Carbonate doped Bi₂MoO₆ hierarchical nanostructure with enhanced transformation of active radicals for efficient photocatalytic removal of NO[J]. Journal

of colloid and interface science, 2019, 557:816-824.

- [46] HUO W,XU W,CAO T, et al. Carbonate-intercalated defective bismuth tungstate for efficiently photocatalytic NO removal and promotion mechanism study[J]. Applied catalysis B: environmental, 2019, 254: 206-213.
- [47] ZHANG P,LOU X W. Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion[J/OL]. Advance materials,2019,31(29):1900281[2020-05-14]. https:// doi.org/10.1002/adma.201900281.
- [48] ZHOU Y, ZHANG X, ZHANG Q, et al. Role of graphene on the band structure and interfacial interaction of Bi₂WO₆/graphene composites with enhanced photocatalytic oxidation of NO[J]. Journal of materials chemistry A, 2014, 2(39): 16623-16631.
- [49] DONG F,XIONG T,SUN Y,et al. Exploring the photocatalysis mechanism on insulators[J]. Applied catalysis B: environmental,2017,219:450-458.
- [50] WANG H. SUN Y. JIANG G. et al. Unraveling the mechanisms of visible light photocatalytic NO purification on earthabundant insulator-based core-shell heterojunctions[J]. Environmental science & technology,2018,52(3):1479-1487.
- [51] WANG H, CHEN Z, HU J, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances[J]. Chemical society reviews, 2014, 43 (15): 5234-5244.
- [52] CHANG X,ZHANG P,ZHANG J, et al. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co₃O₄/BiVO₄ photoanodes [J]. Journal of the American Chemical Society,2015,137(26):8356-8359.
- [53] CHENG H. LIU Y, WANG Z, et al. An anion exchange approach to Bi₂WO₆ hollow microspheres with efficient visible light photocatalytic reduction of CO₂ to methanol[J]. Chemical communication, 2012, 48(78):9729-9731.
- [54] VU N N, KALIAGUINE S, DO T O. Critical aspects and recent advances in structural engineering of photocatalysts for sunlight-driven photocatalytic reduction of CO₂ into fuels[J/OL]. Advanced functional materials, 2019, 29 (31): 1901825
 [2020-05-14]. https://doi.org/10.1002/adfm.201901825.
- [55] BAI S,JIANG J,ZHANG Q, et al. Steering charge kinetics in photocatalysis:intersection of materials syntheses.characterization techniques and theoretical simulations[J]. Chemical society reviews,2015,44(10):2893-2939.
- [56] SUN Y,ZHAO Z,DONG F, et al. Mechanism of visible light photocatalytic NO(x) oxidation with plasmonic Bi cocatalystenhanced (BiO)₂CO₃ hierarchical microspheres [J]. Physical chemistry chemical physics,2015,17(16):10383-10390.
- [57] DONG F,LIU H,HO W K,et al. (NH₄)₂CO₃ mediated hydrothermal synthesis of N-doped (BiO)₂CO₃ hollow nanoplates microspheres as high-performance and durable visible light photocatalyst for air cleaning[J]. Chemical engineering journal,2013,214:198-207.

- 第5期
- [58] DONG F,SUN Y,HO W K,et al. Controlled synthesis,growth mechanism and highly efficient solar photocatalysis of nitrogendoped bismuth subcarbonate hierarchical nanosheets architectures[J]. Dalton transactions,2012,41(27):8270-8284.
- [59] DONG F,LI P,ZHONG J,et al. Simultaneous Pd²⁺ doping and Pd metal deposition on (BiO)₂CO₃ microspheres for enhanced and stable visible light photocatalysis[J]. Applied catalysis A: general,2016,510:161-170.
- [60] FENG X,CUI W,ZHONG J,et al. Enhanced visible light photocatalytic activity of Br-doped bismuth oxide formate nanosheets[J]. Molecules,2015,20(10):19189-19202.
- [61] ZHAO Z, ZHANG W, SUN Y, et al. Bi Cocatalyst/Bi₂MoO₆ microspheres nanohybrid with SPR-promoted visible-light photocatalysis[J]. The journal of physical chemistry C, 2016, 120 (22):11889-11898.
- [62] CHEN R, WANG H, WU H, et al. $\rm SrTiO_3\text{-}BiOI$ heterostruc-

ture interfacial charge separation[J]. Chinese journal of catalysis,2020,41(4);710-718.

- [63] XIAO C, HU H, ZHANG X, et al. Nanostructured gold/bismutite hybrid heterocatalysts for plasmon-enhanced photosynthesis of ammonia[J]. ACS sustainable chemistry & engineering, 2017, 5(11):10858-10863.
- [64] ZHAO Z, DAI W. Electronic structure and optical properties of BiOI ultrathin films for photocatalytic water splitting[J]. Inorganic chemistry, 2015, 54(22): 10732-10737.
- [65] LAKSHMANA R N, EMIN S, VALANT M, et al. Nanostructured Bi₂O₃ @ TiO₂ photocatalyst for enhanced hydrogen production[J]. International journal of hydrogen energy, 2017, 42 (10):6627-6636.
- [66] WANG J, ZHANG M, MENG J, et al. Single-and few-layer BiOI as promising photocatalysts for solar water splitting[J]. RSC advances, 2017,7(39):24446-24452.

Structure control methods of Bi based photocatalytic materials and research progress on their application in environmental energy field

SUN Minglu¹, LI Jieyuan², DONG Fan^{1,2}

1.College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China;

2.Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract Bismuth based photocatalytic material, with the unique layered structure, suitable bandgap, and adjustable valence and conduction band position, is a new kind of unique photocatalysis material developed in recent years. Because of its high efficiency, innocuity, controllable morphology, it has a wide application prospect in the fields of solar energy conversion and environmental remediation. In this paper, the types of Bi based photocatalytic materials are introduced. The structural control methods such as morphology control and surface defect introduction, crystal face construction, surface plasma modification, element doping and heterojunction construction are systematically reviewed. The enhancing mechanism of photocatalytic performance is analyzed, and the application of Bi based photocatalytic materials in water treatment, air purification, nitrogen fixation and hydrogen production are summarized. Finally, the challenges in this field are discussed, and the future development of Bi based photocatalytic materials is prospected.

Keywords bismuth based photocatalytic material; photocatalysis; structural engineering; plasma; depollution of environment; energy conversion

(责任编辑:赵琳琳)