基于微卫星标记的鳜种质遗传多样性与 群体遗传结构分析

曾可为¹ 宋 文¹ 王青云¹ 夏儒龙¹ 王守荣¹ 邓国乔¹ 成为为¹ 曹小娟²

1. 武汉市农业科学院水产研究所, 武汉 430065; 2. 华中农业大学水产学院, 武汉 430070

摘要 采用 Illumina 高通量测序技术对鳜(*Siniperca chuatsi*)性腺转录组进行分析,筛选获得可设计引物的微卫星序列 4 986条。随机合成 239 对微卫星引物,其中 27 个微卫星标记(11.30%)在 12 个鳜群体中呈现多态性,等位基因数 2~8(5.63±1.84),有效等位基因数 1.86~6.80(3.99±1.56),观测杂合度 0.21~0.78(0.49±0.16),期望杂合度 0.46~0.85(0.71±0.12),平均多态信息量 0.37~0.84(0.66±0.15),基因流 0.11~2.14(0.67±0.45)。在 12 个鳜群体中,嘉鱼群体平均等位基因数和平均有效等位基因数最大;武汉群体平均观测杂合度、平均期望杂合度高;12 个群体遗传距离为 0.103 0~1.511 7,遗传相似系数为 0.220 5~0.902 2;抚远群体和顺德群体间的遗传距离最大(1.511 7),遗传相似系数最小(0.220 5);韶关群体和顺德群体间的遗传距离最小(0.103 0),遗传相似系数最大(0.902 2);UPGMA 聚类分析显示珠江水系一支与长江水系一支先聚集后再与黑龙江水体支汇聚;12 个群体间的遗传分化系数 F_{sr} 分于 0.041 8~0.611 0,群体间的遗传分化达到了显著性水平(P<0.05),梁子湖群体与武汉群体间的 F_{sr} 最小(0.041 8),顺德群体与抚远群体间的 F_{sr} 最大(0.611 0);AMOVA 分析表明:群体间的遗传变异占 33.14%,群体内遗传变异占 66.86%;Structure 分析显示 12 个群体可分为 5 个亚群。

关键词 微卫星标记; 频;转录组;遗传多样性;遗传结构
 中图分类号 S 917:Q 959.483 文献标识码 A 文章编号 1000-2421(2019)06-0104-12

微卫星又称简单序列重复序列(SSR),是被广 泛用于群体遗传多样性及遗传结构研究的共显性分 子标记^[1],随着测序技术的不断发展,其成本迅速下 降、通量不断提高,转录组及基因组测序已成为微卫 星开发的主要手段^[24]。

> (Siniperca chuatsi)属硬骨鱼纲鲈形目鲈亚 目鱼类,主要分布于欧亚大陆东亚地区。鳜终生以 活鱼虾为食,属典型的凶猛性肉食性鱼类^[5]。由于 其肉质鲜美,无肌间刺,单价是普通淡水经济鱼类的 4~10倍^[6],具有较高的食用价值和经济价值^[7-8]。 20世纪90年代,鳜人工繁养技术逐步成熟,产业规 模迅速扩大,2017年全国养殖产量 33.56万t,较 2016年增长 6.57%^[9]。近 30年来,鳜养殖规模扩 大过程中由于没有注重种质的保护和选育,近交的 趋势明显,导致鳜养殖群体遗传多样性下降,抗病抗 逆性显著下降,造成鳜品质下降、畸形率升高、流行 病频发,鳜良种化已成为鳜产业健康发展的首要任 务。虽然目前已有"华康1号"鳜新品种以及"秋浦 杂交斑鳜"和"长珠杂交鳜"杂交鳜新品种,鳜优良苗 种覆盖率低仍是制约鳜产业发展的瓶颈问题。多年 来,对鳜资源的评估多针对少数几个野生或养殖群 体^[10-11]。近年来,由于栖息地环境变化以及过度捕 捞、养殖群体的进入、水利建设等人类活动^[12-13],对 野生鳜遗传多样性及遗传结构产生了严重影响。虽 然鳜(Siniperca chuatsi,亦称翘嘴鳜)微卫星标记 开发已有报道^[14-15],但是目前适用于研究鳜群体遗 传多样性、遗传结构分析以及分子标记辅助育种的 高效多态微卫星数量依然是不够的。本研究采用

收稿日期: 2019-02-14

通信作者:曹小娟,博士,副教授.研究方向:鱼类遗传育种. E-mail: caoxiaojuan@mail.hzau.edu.cn

基金项目:国家重点研发计划(蓝色粮仓)项目(2018YFD0901203);现代农业产业技术体系专项(CARS-46);武汉市农科院开放性课题 (Kfxkt201807)

曾可为,高级工程师.研究方向:鱼类遗传育种. E-mail: zkw365@aliyun.com

1 材料与方法

1.1 样本采集

2018 年采集 12 个鳜群体,即武汉市山坡乡佳 恒水产有限公司选育群体、长江宜昌江段野生群体、 长江嘉鱼江段野生群体、长江京口江段野生群体、汉 江丹江口水库段野生群体、安徽秋浦江段野生群体、 洞庭湖沅江江段野生群体、鄱阳湖鄱阳县段野生群 体、黑龙江抚远江段野生群体、广东顺德养殖场养殖 群体、广东北江韶关江段野生群体、梁子湖南北咀段 野生群体。野生群体通过各江段渔民处收集获得, 采集规格为 500~4 000 g,每个群体采集鳜尾鳍 50 尾,置于 4 mL EP 管无水乙醇保存。

1.2 转录组文库的构建

选取武汉市山坡乡佳恒水产有限公司选育群体 雌雄各3尾,采集性腺,液氮冻存,采用TRIzol试剂 (Invitrogen,USA)提取性腺组织的RNA,通过3% 琼脂糖和NanoDrop 2000分光光度计(Thermo Scientific,USA)对提取的RNA的质量和浓度进行检 测。采用反转录试剂盒(TaKaRa,Japan)将RNA 反转录成 cDNA,送武汉菲沙基因信息有限公司构 建文库测序分析。各种SSRs 序列通过MISA软件 富集建立SSR文库,Primer Premier 5.0软件设计 引物,引物长度设置为18~28 bp,目的产物设置为 80~250 bp,随机选择其中239 对引物送天一辉远 生物科技有限公司合成。

1.3 基因组 DNA 抽提、PCR 扩增和琼脂糖检测

采用鳜尾鳍酚氯仿法加入蛋白酶 K 抽提基因 组 DNA,方法参照文献[16]。提取出的 DNA 采用 nanodrop 浓度计检测 DNA 质量,并用去离子水稀 释至 100 ng/µL,-20 ℃保存。

用梯度 PCR 仪(eppendorf)PCR 扩增优化退火 温度,PCR 反应体系为 10.0 μ L,内含 10×PCR Buffer(Mg²⁺ plus)1.5 μ L,dNTP (2.5 mmol/L) 1 μ L,r Taq DNA 聚合酶(5 U/ μ L)0.1 μ L,正向反 向引物(10 μ mol/L)各 0.5 μ L,模板 DNA 0.5 μ L, 加双蒸水至总体积为 10.0 μ L。PCR 程序为 95 ℃ 预变性 5 min;95 ℃变性 30 s,退火 45 s(退火温度 58~60 ℃),72 ℃延伸 30 s,33 个循环;4 ℃延伸 10 min。1%的琼脂糖检测是否可以扩增目的产物(见 表 1 产物大小)。将可以扩增获得目的条带的位点 在正向引物添加 M13 序列 TGTAAAACGACG-GCCAGT 合成荧光引物,在最佳的退火温度下进行 群体 PCR 扩增(每个群体 30 尾),采用 ABI 3730XL Genetic Analyzer(Appled Biosystems)进行毛细管 电泳检测记录峰值、确定基因型并保存结果。

1.4 数据统计与分析

Genemarker 软件获得毛细管电泳图峰值,采用 PopGene 32 进行数据统计分析,计算群体的等位基 因数(N_a)、有效等位基因数(N_a)、观测杂合度 (H_o)、期望杂合度(H_o)、遗传相似系数(I)、群体间 遗传距离(D_)并进行 Hardy-Weinberg 平衡检测。 用 PIC-Calc 软件计算多态信息含量 (PIC)。Ntsys2.1 软件依据遗传相似系数采用 SAHN 功能进 行群体 UPGMA 聚类分析。用 Arlequin V3.5.1.3 软件中的 AMOVA 方法分析 12 个群体的遗传变 异,计算遗传分化系数 Fst 来评价群体间的遗传差 异,通过1000次重复抽样来检验群体间 Fst 显著 性,使用 $N_{\rm m} = (1 - F_{\rm st})/(4F_{\rm st})$ 计算群体间的基因 流。Structure 2.3.4 进行群体遗传结构分析,参数 "Length of Burnin Period"设置为 10 000,"Number of MCMC Reps after Burnin"设置为 50 000, K 为 $1\sim 12$,每个 K 值运行 20 次。基于 L(K)和 ΔK 随 K 的变化值确定 K 值,推断样品分属某群体的最大 概率,其中 L(K)为 structure 中的 $\ln P(D)$ 值, $\Delta K = \operatorname{mean}(|L''(K)|)/\operatorname{stedv}[L(K)], |L''(K)| =$ |L'(K+1) - L'(K)|, L'(K) = L(K) - $L (K-1)^{[17]}$

2 结果与分析

2.1 微卫星序列文库特征

鳜性腺转录组总计获得可设计引物的微卫星序 列4986条,其中雌性特有微卫星序列1157条,雄 性特有微卫星序列1954条,共有微卫星序列1875 条;总计中单碱基重复2种类型67条序列,二碱基 重复8种类型2697条序列,三碱基重复30种类型 1 974 条序列,四碱基重复 62 种类型 152 条序列,五 碱基重复 40 种类型 61 条序列,六碱基重复 35 种类 型 35 条序列(图 1);碱基重复次数范围 4~55 次, 其中碱基重复 6 次的序列条数最多,占整条数的 24.81%,随着碱基重复次数的增加序列条数快速 减少。

图 1 鳜性腺转录组微卫星重复类型分布图

2.2 微卫星标记的开发及其特征值

随机选择微卫星引物 239 对进行合成,其中 144 对(60.25%)扩增良好且为目的条带大小,27 对 (11.30%)在 12 个群体 360 尾样品检测中表现为多态 性(图2)。27个多态性微卫星位点的等位基因数范围为 2~8,平均值为 5.63±1.84;有效等位基因数范围为 1.86~6.80,平均值为 3.99±1.56;观测杂合度范围为 0.21~0.78,平均值为 0.49±0.16;期望杂合度范围为 0.46~0.85,平均值为 0.71±0.12;平均多态信息量范围为 0.37~0.84,平均值为 0.66±0.15;基因流范围为 0.11~2.14,平均值为 0.67±0.45(位点特征值详见表 1)。

2.3 群体遗传多样性分析

27 对微卫星在12个群体中共检测到152个等 位基因,其中平均等位基因数和平均有效等位基因 数的多少依次为:嘉鱼群体>梁子湖群体>宜昌群 体>武汉群体>京口群体>沅江群体>秋浦群体> 鄱阳湖群体>韶关群体>抚远群体>丹江口群体> 顺德群体;平均观测杂合度和平均期望杂合度:武汉 群体>嘉鱼群体>梁子湖群体>宜昌群体>沅江群 体>京口群体>秋浦群体>韶关群体>都阳湖群体> 抚远群体>丹江口群体>顺德群体;平均多态信息量: 嘉鱼群体>宜昌群体>鄱阳湖群体>京口群体>梁子 湖群体>水浦群体>浙江群体>东口群体>梁子 湖群体>全了百群体>和阳湖群体>

图 2 微卫星 SSR-1 位点在鳜抚远群体部分个体扩增毛细管电泳图

Fig.2 Amplifications of microsatellite SSR-1 in Fuyuan population of S. chuatsi by capillary electrophoresis

2.4 群体遗传分化分析

通过 PopGene 32 得到 12 个群体间的 Nei 氏遗 传距离(Ds)和遗传相似系数 I(表 3)。12 个群体的 遗传距离为 0.103 0~1.511 7,遗传相似系数为 0.220 5~0.902 2;抚远群体和顺德群体间的遗传距 离最大(1.511 7),遗传相似系数最小(0.220 5);韶 关群体和顺德群体间的遗传距离最小(0.103 0),遗 传相似系数最大(0.902 2)。 根据 Nei 氏遗传相似系数采用 Ntsys2.1 软件 SAHN 功能进行群体 UPGMA 聚类分析,结果显示 韶关群体和顺德群体先聚为一支;梁子湖群体与武 汉群体、嘉鱼群体、沅江群体、宜昌群体分别聚集,鄱 阳湖群体与秋浦群体、京口群体分别聚集,这两大支 分别汇聚后再与丹江口群体汇聚;之后珠江水系一 支与长江水系一支先聚集后再与黑龙江水体支汇聚 (图 3)。

亘
Ė
112
Ē
馼.
R.S
lγ≓ Mλ
SM
÷
2
鱖
表

Table 1 Characteristics of 27 polymorphic microsatellites in S. chuatsi

位点 Locus	ID 북 Genbank accession No	引物(5'-3') Prime sequence (5'to 3')	产物 大小/bp Size range	扩播 温度/°C Tm	重复序列 Repeat motif	等位基 因数 N ^a	有效等位 基因数 N _e	浅 う 一 、 H 。	期望杂 合度 H。	平均多态 信息量 PIC	F 分析 F _{ST}	基因流 N
SSR-1	MK204424	F, TGTAAACGACGGCCAGTCACAGCTGGTTCTGTACA- GCCT	$153 \sim 183$	28	(TCAGGC) ₉	2	5.493 6	0.550 0	0.819 1*	0.7937	0.334 1	0.498 2
SSR-2	MK204426	R,TTGTTAGCCTTGACAGGTGTGAT F,TGTAAAACGACGGCCAGTAGGATTGGACGCTATGTA- AAACA R,TGGCATTGAGATTAGATGATGTG	$166 \! \sim \! 184$	60	(GCCTCA)7	4	2.663 5	0.361 1	0.625 4*	0.547 5	0.378 3	0.410 9
SSR-3	MK204428	F; TGTAAAACGACGGCCAGTTACTCCTCATGTTTCCAG TTGTG R; TGTTACAAATCTCACGACTGCTT	$106 \sim 112$	60	(ATTAGC) ₄	n	2.035 5	0.263 9	0.509 4*	0.438 6	0.435 1	0.324 5
SSR-4	MK204433	F, TGTAAAACGACGGCCAGTTCATTACATAACTCGGCG- TCTTT R,GTTTTAAATGTAGCTTGGGCAGC	$162 \!\sim\! 177$	60	(CAG) ₆	2	4.542 0	0.633 3	0.780 9*	0.746 1	0.158 7	1.325 2
SSR-5	MK204439	F, TGTA AAACGACGGCCAGTCTGAAAGACAAGAGAGAGA- AGGGT R,CTCAGCTGCTGTGACATAAACAG	$129 \!\sim\! 141$	26	$(GAG)_{11}$	9	3.165 2	0.208 3	0.685 0*	0.632 7	0.6884	0.113 2
SSR-6	MK204440	F. TGTAAAACGACGGCCAGTTAGCTTCGTCGTTGTCTT- TTCCT R,GATTAAACTCTCGCTGAATGTGG	$172 \sim 184$	60	(TCT) ₁₃	9	5.311 8	0.605 6	0.812 9*	0.783 8	0.276 9	0.652 9
SSR-7	MK204441	F, TGTA AAACGACGGCCAGTGGTCTGAGGGAGAGAAAG- AAGAA R,CAGCTTTGAGCCATTCACTTC	$140 \sim 158$	28	$(GCT)_{14}$	Ľ.	3.725 2	0.580 6	0.732 6*	0.687 3	0.279 2	0.645 4
SSR-8	MK204444	F, TGTAAAACGACGGCCAGTAATCAAAAGGGAAATTTT- TCACAG R, ACAAGTCTAAACATTGCATTGCC	$112 \sim 130$	60	$(TTA)_{18}$	ø	5.751 3	0.586 1	0.827 3*	0.804 1	0.298 7	0.586 9
SSR-9	MK204445	F, TGTA AAACGACGGCCAGTATCATTCTGATCCACACT- CCATT R,GTACTCACACCGTGGGGTATCACT	$154 \sim 178$	26	$(AGA)_{18}$	ø	6.802 6	0.630 6	0.854 2*	0.835 4	0.301 9	0.578 2
SSR-10	MK250535	F, TGTAAAACGACGGCCAGTTTTTAGCTGCTGTTCCT- GTTAG R,CGTTACAGCCAACCAAATCTAAT	$153 \sim 168$	26	$(ATT)_9$	9	3.348 8	0.555 6	0.702 4*	0.6497	0.275 2	0.658 5
SSR-11	MK250543	F; TGTAAAACGACGGCCAGTGGTTAAGTGTCTCTGTCG- CTTGT R;GCCTAAAGTGAAATTTGAGGGGAC	$167\!\sim\!185$	59	(AGT)10	×	6.710 3	0.783 3	0.852 2*	0.832 6	0.142 4	1.505 9

Table
Continued
续表

	chuatsi
	s
	Э.
个多态微卫星特征值	polymorphic microsatellites
5	2.7
籔	Ĵ
表 1 隻	Characteristics
	Table 1

			ind ionitind .		antes III 9. Chu	1611						
位点 Locus	ID 북 Genbank accession No	引物 Prime sequence (5 ['] to 3')	产物 大小/bp Size range	扩増 温度/℃ Tm	重复序列 Repeat motif	等位基 因数 N _a	有效等位 基因数 N _e	税 日。	期望杂 合度 H _。	平均多态 信息量 PIC	F 分析 F _{ST}	基因流 N
SSR-12	MK250545	F, TGTAAACGACGGCCAGTGTGAAACGTCAGTGGTGT- GTATG R, AATAAATAAGGCCAAAAAGCTCC	$173 \sim 182$	51 8	(GGA)11	2	4.606 2	0.322 2	0.784 0*	0.7476	0.614 6	0.156 8
SSR-13	MK250547	F, TGTAAAACGACGGCCAGTAGAGGAGGAGGCAGGTC- TTTAC R,ATGTTTACTGTCCAGCCACAGTT	$165 \!\sim\! 183$	50	(CCT) ₁₁	2	6.0314	0.775 0	0.835 4*	0.8119	0.1046	2.140 1
SSR-14	MK250549	F, TGTA AAACGACGGCCAGT AAACTTGGGACAAAAAGG- AAGTT R,GTGAGAAATCTGTACATGGACGC	$144 \sim 153$	60	(GAG) ₁₁	4	1.856 9	0.233 3	0.462 1*	0.422 2	0.5264	0.225 0
SSR-15	MK250553	F, TGTA AAACGACGGCCAGTAGCCAGAGACACCTCAA- CTTCT R,CCAGTGTTAGTTTCCCATACTGC	$116 \sim 128$	59	(CAT) ₁₁	2	3.644 1	0.547 2	0.726 6*	0.6784	0.266 2	0.689 2
SSR-16	MK250559	F, TGTAAAACGACGGCCAGTGTTAGCTTCGTCGTTGTC- TTTTC R,GATTAAACTCTCGCTGAATGTGG	$171 \sim 189$	59	(TCT) ₁₃	×	6.773 3	0.672 2	0.853 5*	0.834 6	0.239 3	0.794 9
SSR-17	MK250561	F, TGTA AAACGACGGCCAGTGACAATTCAAAGCCCATG- TTTTA R,AGACAGTGTAAGCAGGTGGACTC	$121\!\sim\!136$	20	$(TAT)_{16}$	9	4.398 7	0.644 4	0.773 7*	0.739 2	0.181 5	1.127 7
SSR-18	MK250563	F, TGTA AAACGACGGCCAGTGACGACTGAGCGATAAAA- ACAAG R,CATCTGCAGACTCCATGAAGAG	$122\!\sim\!134$	59	(TTA) ₆	4	2.399 0	0.427 8	0.584 0*	0.504 5	0.345 7	0.473 2
SSR-19	MK250576	F, TGTAAAACGACGGCCAGTAGCATCATCGTGCTGG- TGAC R,CTGCTATGATGTGGGGGGGGGGGTCTG	$171 \!\sim\! 181$	60	(ATTT) ₆	ŝ	2.023 9	0.4194	0.506 6*	0.396 1	0.180 3	1.136 4
SSR-20	MK250582	F, TGTA AAACGACGGCCAGTATGTACTGAATGGACTGG- TGCTT R, TGCAGGTAATTTGAAATCAGACA	$95 \sim 105$	59	$(TG)_{14}$	9	4.313 2	0.611 1	0.769 2*	0.7379	0.2279	0.846 8
SSR-21	MK250588	F, TGTAAAACGACGGCCAGTGTAGCCGTAGCAACCC- CAG R,CAAGACTTCCTGTCTGCAGTGTC	$153 \sim 159$	60	$(GA)_{16}$	2	2.9464	0.405 6	0.661 5*	0.598 9	0.3819	0.404 7
SSR-22	MK250592	F, TGTAAAACGACGGCCAGTGGAGTTCACGTACCAAAA- AGATG R, TTCCATTGTTGTTCTGAGGGAAGT	$106 \sim 112$	59	(AC) ₁₉	ŝ	2.971 1	0.291 7	0.664 3*	0.589 3	0.577 6	0.182 8

E	lable
	Continued
7	-
#	ж

Ç
and the second second second second
ł
1
C
9.0
ξ
-

第6期

		Table 1 Characte	ristics of 27 polymorph	hic microsate	llites in S. chu	uatsi						
位点 Locus	ID 号 Genbank accession No	引物 Prime sequence (5'to 3')	が物 大小/bp Size range	扩增 温度/℃ Tm	重复序列 Repeat motif	等位基 因数 N ^a	有效等位 基因数 N _e	观测 杂合度 H。	期望杂 合度 H [。]	平均多态 信息量 PIC	F 分析 F _{ST}	基因流 N ^m
SSR-23	MK250594	F. TGTAAACGACGGCCAGTCCAACTCGTATGGC/ AGCTC R. CTCCCATGTCGAAGAGTTGTATG	.СТ- 163~167	60	(CA)20	7	1.971 9	0.386 1	0.493 6*	0.3714	0.248 3	0.757 0
SSR-24	MK250619	F, TGTAAAACGACGGCCAGTATTTGGTTCGTAGG AAGTT R,GAACAAAAACAAGCAGGCTTAAA	2AAA- 98~110	59	(CA) ₃₆	×	4.568 9	0.483 3	0.782 2*	0.746 9	0.399 9	0.375 1
SSR-25	MK250634	F, TGTAAACGACGGCCAGTTACAGGAGCAATTC AGGTC R, TTTTCTGCTTGTGGAGGTAGATG	4GAG- 154~168	60	(CAG) ₉	ŝ	2.272 4	0.400 0	0.560 7*	0.471 0	0.340 5	0.484 1
SSR-26	MK250637	F; TGTAAACGACGGCCAGTTGGAGTTAAGAACA TGTTT R; TGCCTCTACAAAAGCCAAAATAA	GCCA- 168~180	59	(ATG) ₉	9	3.286 9	0.450 0	0.696 7*	0.6518	0.333 8	0.499 0
SSR-27	MK250644	F, TGTAAAACGACGGCCAGTAATGCCTTTGAAAT ACAGA R;CACCATGAATTCAAACAACAAAA	3GTA- 131~141	59	$(TAT)_{10}$	2	4.104 1	0.452 8	0.757 4*	0.7184	0.387 0	0.395 9
注:	表示显著偏离	§哈温平衡 Note: * Significant deviation from HWE.										
		表 2 籔 Table 2 The genetic info	27 个微卫星在 12 イ rmation of ²⁷ microsat	个群体中的 tellites in 12	遗传信息 populations of	f S. chuat	si					
	群体 'opulation	等位基因数 N _a 有效等位基因	数 N _e	观测杂合度	$_{\circ}H_{\circ}$		期望杂合勇	Ĕ H _e		平均多态	信息量 P	C
武汉 Wu	ıhan	3.15 ± 1.06 3.07 ± 0.5	60	0.68 ± 0.1	14		$0.65 \pm 0.$.12		0.56	± 0.15	
抚远 Fu	yuan	2.41 ± 1.74 2.25 ± 1.4	17	0.37 ± 0.3	36		$0.37 \pm 0.$	35		0.57	± 0.17	
顺德 Sh	unde	2.04 ± 1.40 1.96 ± 1.3	0	0.30 ± 0.3	34		$0.30 \pm 0.$	33		0.54	± 0.17	
韶关 Sha	aoguan	2.52 ± 1.67 2.45 ± 1.8	22	0.42 ± 0.3	36		0.41 ± 0	34		0.57	± 0.18	

 0.53 ± 0.16 0.64 ± 0.15

 $\begin{array}{c} 0.37\pm 0.33\\ 0.63\pm 0.26\\ 0.61\pm 0.22\\ 0.61\pm 0.22\\ 0.36\pm 0.36\\ 0.44\pm 0.35\\ 0.48\pm 0.32\\ 0.48\pm 0.32\\ 0.57\pm 0.30\\ 0.54\pm 0.26\\ 0.54\pm 0.26\end{array}$

 0.36 ± 0.33

 0.63 ± 0.27 0.61 ± 0.23

 3.55 ± 1.63

 3.29 ± 1.54 2.53 ± 1.74

 2.14 ± 1.27

 $\begin{array}{c} 2.22 \pm 1.42 \\ 3.74 \pm 1.79 \\ 3.44 \pm 1.65 \\ 2.63 \pm 1.88 \end{array}$

丹江口 Danjiangkou

嘉鱼 Jiayu

梁子湖 Liangzihu 鄱阳湖 Poyanghu

 0.40 ± 0.36

 $\begin{array}{c} 0.46\pm 0.36\\ 0.48\pm 0.33\\ 0.61\pm 0.33\\ 0.58\pm 0.28\end{array}$

 $\begin{array}{c} 2.67\pm1.73\\ 2.84\pm1.66\\ 3.24\pm0.65\\ 2.80\pm1.19\end{array}$

 $\begin{array}{c} 2.96 \pm 1.76 \\ 3.37 \pm 1.78 \\ 2.93 \pm 1.27 \end{array}$

 2.78 ± 1.87

注:数值为均值土标准差。Note:Data expressed as mean±SD.

沅江 Yuanjiang

秋浦 Qiupu 京口 Jingkou 宜昌 Yichang

 0.59 ± 0.17 0.59 ± 0.19 0.58 ± 0.19

 059 ± 0.17 0.63\pm0.16 0.57 ± 0.14

表 3 鳜 12 个群体的 Nei 氏遗传相似系数(上三角)和遗传距离(下三角)

Table 3 The Nei's genetic identity (above diagonal) and genetic distance (below diagonal) between 12 populations of S. chuatsi

群体 Population	武汉 Wuhan	抚远 Fuyuan	顺德 Shunde	韶关 Shaoguan	丹江口 Danjiangkou	嘉鱼 Jiayu	梁子湖 Liangzihu	鄱阳湖 Poyanghu	秋浦 Qiupu	京口 Jingkou	宜昌 Yichang	沅江 Yuanjiang
武汉 Wuhan		0.389 5	0.522 5	0.550 7	0.593 2	0.839 2	0.898 2	0.592 4	0.694 6	0.693 2	0.787 1	0.865 4
抚远 Fuyuan	0.942 8		0.220 5	0.234 1	0.220 7	0.309 5	0.372 8	0.296 0	0.257 5	0.263 9	0.296 2	0.312 9
顺德 Shunde	0.649 1	1.511 7		0.902 2	0.297 5	0.459 0	0.552 0	0.432 9	0.368 0	0.407 3	0.424 6	0.527 6
韶关 Shaoguan	0.596 6	1.452 0	0.103 0		0.351 5	0.454 2	0.527 9	0.441 5	0.379 6	0.438 9	0.460 4	0.525 0
丹江口 Danjiangkou	0.522 3	1.511 1	1.212 5	1.045 6		0.671 0	0.609 8	0.456 3	0.569 5	0.454 4	0.585 0	0.551 4
嘉鱼 Jiayu	0.175 3	1.172 8	0.778 7	0.789 3	0.398 9		0.848 0	0.565 9	0.656 2	0.645 1	0.760 3	0.762 1
梁子湖 Liangzihu	0.107 4	0.986 8	0.594 3	0.638 9	0.494 6	0.164 9		0.646 9	0.730 3	0.688 3	0.744 0	0.799 1
鄱阳湖 Poyanghu	0.523 6	1.217 3	0.837 2	0.817 7	0.784 5	0.569 3	0.435 5		0.823 5	0.626 5	0.493 7	0.484 2
秋浦 Qiupu	0.364 4	1.356 8	0.999 6	0.968 6	0.563 0	0.421 3	0.314 3	0.194 2		0.685 1	0.598 1	0.5793
京口 Jingkou	0.366 4	1.332 2	0.898 3	0.823 4	0.788 7	0.438 3	0.373 6	0.467 6	0.378 2		0.616 0	0.595 9
宜昌 Yichang	0.239 4	1.216 8	0.856 6	0.775 7	0.536 2	0.274 0	0.295 7	0.705 9	0.514 0	0.484 4		0.704 0
沅江 Yuanjiang	0.144 5	1.161 9	0.639 4	0.644 3	0.595 4	0.271 7	0.224 3	0.725 2	0.545 9	0.517 6	0.351 0	

Fig.3 Dendrogram of the 12 populations of *S*. *chuatsi* according to the Nei's genetic identity using UPGMA clustering analysis

AMOVA 分析表明, 鳜 12 个群体间的遗传分 化系数 F_{sr} 介于 0.041 8~0.611 0(表 4), 群体间 的遗传分化达到了显著性水平(P<0.05)。其中, 梁子湖群体与武汉群体间的 F_{sr} 最小(0.041 8), 顺

德群体与抚远群体间的 F_{sT} 最大(0.611 0)。鳜 12 个群体 AMOVA 分析表明:在总遗传变异中,群体 间的遗传变异占 33.14%,群体内遗传变异占 66.86%(表 5)。

群体	武汉	抚远	顺德	韶关	丹江口	嘉鱼	梁子湖	鄱阳湖	秋浦	京口	宜昌	沅江
Population	Wuhan	Fuyuan	Shunde	Shaoguan	Danjiangkou	Jiayu	Liangzihu	Poyanghu	Qiupu	Jingkou	Yichang	Yuanjiang
武汉 Wuhan												
抚远 Fuyuan	0.381 4											
顺德 Shunde	0.353 1	0.611 0										
韶关 Shaoguan	0.285 4	0.545 6	0.139 8									
丹江口 Danjiangkou	0.286 3	0.568 2	0.579 5	0.495 9								
嘉鱼 Jiayu	0.070 2	0.416 5	0.387 0	0.332 5	0.251 8							
梁子湖 Liangzihu	0.041 8	0.400 9	0.350 8	0.306 5	0.287 9	0.0708						
鄱 阳 湖 Poyanghu	0.272 7	0.535 2	0.509 7	0.446 0	0.461 3	0.290 8	0.254 9					
秋浦 Qiupu	0.202 8	0.525 9	0.513 8	0.450 1	0.381 3	0.227 2	0.190 3	0.185 6				
京口 Jingkou	0.182 7	0.497 4	0.470 8	0.399 1	0.413 8	0.211 0	0.193 0	0.310 4	0.255 3			
宜昌 Yichang	0.098 2	0.443 6	0.421 5	0.356 2	0.317 5	0.116 2	0.126 7	0.339 0	0.266 9	0.234 7		
沅江 Yuanjiang	0.071 2	0.449 2	0.386 9	0.331 6	0.339 8	0.130 3	0.113 0	0.356 9	0.291 0	0.259 8	0.166 0	

表 4 12 个鳜群体的遗传分化指数

 Table 4
 Genetic differentiation indices between 12 populations of S. chuatsi

表 5 鱖 12 个群体的 AMOVA 分析 Table 5 Analysis on molecular variance (AMOVA) of 12 populations of S. chuatsi

变异来源 Source of variation	自由度 df	平方和 Sum of squares	变异组分 Variance components	变异百分数/% Percentage of variation
群体间 Among populations	11	2 219.55	3.253 55 Va	33.14
群体内 Within populations	708	4 647.95	6.564 90 Vb	66.86
总计 Total	719	6 867.50	9.818 45	

运用 Structure2.3.4 软件对 12 个鳜群体进行 遗传结构分析,结果显示对数极大似然值 L(K)值 随 K 值呈现逐步递增的规律(图 4), ΔK 值随 K 值 呈现先递增后下降的趋势,在 K = 5 时, ΔK 值最大 (图 5),说明这 12 个群体可分为 5 个亚群(图 6),其 中武汉群体中有 0.60%为亚群 I,98.80%为亚群 II,0.20%为亚群 II,0.10%为亚群 N,0.30%为亚群 V;抚远群体 0.10%为亚群 I,0.10%为亚群 II, 0.10%为亚群 II,99.60%为亚群 N,0.10%为亚群 II, 99.60%为亚群 II,0.10%为亚群 II, 99.60%为亚群 II,0.10%为亚群 II,

2.5 群体遗传结构分析

99.40%为亚群Ⅲ,0.10%为亚群Ⅳ,0.20%为亚群 V;丹江口群体 0.10%为亚群Ⅰ,0.10%为亚群Ⅱ, 0.10%为亚群Ⅲ,0.10%为亚群Ⅳ,99.60%为亚群Ⅱ, V;嘉鱼群体 0.70%为亚群Ⅰ,94.50%为亚群Ⅱ, 0.10%为亚群Ⅲ,0.10%为亚群Ⅳ,4.60%为亚群Ⅱ, 0.20%为亚群Ⅲ,0.20%为亚群Ⅰ,97.20%为亚群Ⅱ, 0.20%为亚群Ⅲ,0.20%为亚群Ⅰ,0.70%为亚群Ⅱ, 0.20%为亚群Ⅲ,0.20%为亚群Ⅰ,0.10%为亚群Ⅱ, 0.20%为亚群Ⅲ,0.10%为亚群Ⅰ,0.10%为亚群Ⅱ, 0.20%为亚群Ⅲ,0.10%为亚群Ⅰ,0.10%为亚群Ⅱ, 0.10%为亚群Ⅲ,0.10%为亚群Ⅰ,0.30%为亚群Ⅱ, 0.10%为亚群Ⅲ,0.10%为亚群Ⅰ,0.30%为亚群Ⅱ, 0.20%为亚群Ⅲ,0.10%为亚群Ⅰ,0.30%为亚群Ⅱ,

1~12 分別代表武汉群体、抚远群体、顺德群体、韶关群体、丹江口群体、嘉鱼群体、梁子湖群体、鄱阳湖群体、秋浦群体、京口群体、宜 昌群体、沅江群体。1-12 represent Wuhan population, Fuyuan population, Shunde population, Shaoguan population, Danjiangkou population, Jiayu population, Liangzihu population, Poyanghu population, Qiupu population, Jingkou population, Yichang population, Yuanjiang population.

图 6 鳜 12 个群体在 K = 5 时的遗传结构图

Fig.6 Genetic structure bar plot of membership for 12 populations of S. chuatsi (K=5)

宜昌群体 0.30% 为亚群 I,99.00% 为亚群 I, 0.10%为亚群 II,0.20%为亚群 N,0.40%为亚群 V; 沅江群体 0.30% 为亚群 I,99.10% 为亚群 II, 0.20%为亚群 II,0.10%为亚群 N,0.30% 为亚群 V。

3 讨 论

3.1 基于转录组的微卫星标记开发

随着高通量测序技术的发展,可以高效而廉价 地获得各物种的转录组,使得转录组成为获得微卫 星的重要手段^[18-19],本研究采用高通量 Illuminate 测序获得鳜性腺转录组文库,总计获得可设计引物 的微卫星序列 498 6条。鳜微卫星标记二碱基重复 占比最高(54.09%),这与其他鱼类研究结果类似, 如:巨魾二碱基重复占比 54.84%^[20],拟穴青蟹为 42.9%^[21],团头鲂为 62.7%^[22]。单碱基重复、二碱 基重复、三碱基重复含量最高的类型在鳜微卫星标 记中为 A/T(56,83.58%),AC/GT(980,36.34%), CTC/GAG(324,16.41%),在巨 魾也有类似的结 论^[20]。本研究总计获得 27 个多态位点(11.30%), 较已 报 道 的 鳜 微 卫 星 开 发 的 多 态 性 比 例 低 (24.18%)^[14],这可能是由于本研究随机引物中 2~ 6 碱基随机涉及,而已报道的研究中二碱基重复合 成比例较高,且鳜多态位点在二碱基重复所占比例 较高所致。

3.2 遗传多样性

遗传多样性是生物遗传信息的总和,是生物适 应多样性环境的基础,遗传多样性越高对环境的适 应性越强,进化潜力越大^[23-24]。已报道的采用微卫 星标记对鳜群体遗传多样性研究大多仅限于少数群 体,如曾庆凯等^[10]研究了广东养殖群体、安徽养殖 群体、湖南野生群体 3 个群体,朱滔等^[14]研究了陆 水水库(赤壁)和沅江流域(常德、怀化)的 3 个野生 群体,本研究分析了 12 个鳜群体的遗传多样性,丰 富了鳜种质资源研究数据。

等位基因数、有效等位基因数、观测杂合度、期 望杂合度、平均多态信息量是评估微卫星位点多态 性以及评估生物的遗传多样性的重要指标^[25]。观 测杂合度和期望杂合度是评估群体遗传变异的参 数,杂合度越高说明群体遗传变异越大^[26],本研究 12个鳜群体中,武汉群体的平均观测杂合度(*H*。)

和平均期望杂合度 (H_{a}) 分别为 0.68、0.65,表明具 有相对较高的遗传多样性水平。这可能是由于武汉 选育群体的基础群体遗传多样性较本研究中的野生 群体高,使得武汉群体经过选育后,其遗传多样性仍 高于 2018 年收集的野生鳜群体,另外,也可能是鳜 野生群体由于自然或人为的干扰,导致其遗传多样 性水平较养殖群体低。顺德群体的 H。和 H。分别 为 0.30、0.30,表明其遗传多样性水平相对较低。顺 德养殖的鳜种质基本上来自长江,可能由于亲本量 有限,近交系数较高,导致其遗传多样性较低。韶关 群体(珠江的北江支流)的鳜可能是养殖逃逸的,导 致其遗传多样性不高(0.42,0.41)。通常认为 PIC >0.5表示该位点多态性高,0.25<PIC<0.5表 示该位点多态性适中,PIC<0.25 表示该位点多态 性低^[27]。本研究中 12 个群体的 PIC 均值 0.53~ 0.64,表明鳜 12 个群体均呈现高度的遗传多样性。 该结果与曾庆凯等[10]以及朱滔等[14]认为鳜具有高 度的遗传多样性水平的结果相一致。

Hardy-Weinberg 平衡是检测群体是否存在连锁不平衡的指标,杂合子过剩或缺失都会导致哈温不平衡,而杂合子过剩可能与群体亲本数量较小或者封闭群体产生的奠基者效应或者瓶颈效应等有关,杂合子缺失可能与群体样本数量小、近交现象和人为干扰等有关^[28]。哈温定律显示一个足够大的随机交配群体,在没有选择、迁移、突变和外部干扰的条件下,等位基因频率和基因型频率将会在世代间稳定不变^[24]。本研究 12 个鳜群体中,27 个多态性微卫星位点有 17 个均未显著偏离哈温平衡(*P*<0.05),说明这 17 个位点受到选择、迁移、突变和外部干扰较小,群体遗传结构尚处于稳定状态中。

遗传距离和遗传相似系数是研究群体间遗传关系的指标,遗传距离大、遗传相似系数小表明群体间 亲缘关系远,遗传距离小、遗传相似系数大表明群体 间亲缘关系近。本研究中抚远群体和顺德群体遗传 距离最大(1.5117),遗传相似系数最小(0.2205), 说明亲缘关系最远;韶关群体和顺德群体间的遗传 距离最小(0.1030),遗传相似系数最大(0.9022), 说明韶关群体和顺德群体亲缘关系最近。抚远群体 和顺德群体的地理距离最远,属于两个水系,而韶关 群体和顺德群体地理距离最近,属于同一水系,鳜群 体的地理距离与遗传距离及遗传相似呈正相关。与 已报到的鳜遗传距离与水系地理距离呈正相关的结 论一致^[14]。UPGMA聚类分析结果显示韶关群体 和顺德群体先聚为一支;梁子湖群体与武汉群体、嘉 鱼群体、沅江群体、宜昌群体分别聚集,都阳湖群体 与秋浦群体、京口群体分别聚集,这两大支分别汇聚 后再与丹江口群体汇聚;之后珠江水系一支与长江 水系一支先聚集后再与黑龙江水体支汇聚。群体内 和群体间的遗传变异分析表明:在总遗传变异中,群 体间的遗传变异占 33.14%,群体内遗传变异占 66.86%。

遗传分化指数(Fsr)是用来评估群体遗传分化 程度的指标, $F_{\rm sr}$ < 0.05 表明群体遗传分化较弱, $0.05 < F_{st} < 0.15$ 表明群体中等程度遗传分化, $0.15 < F_{st} < 0.25$ 表明群体较大程度遗传分化, F_{st}>0.25 表明群体极大程度遗传分化^[29]。本研究 中 12 个鳜群体的 F_{st} 在 0.041 8~0.611 0 之间,其 中武汉群体与梁子湖群体 Fst 值为 0.041 8,说明两 群体遗传分化较弱;武汉群体与嘉鱼群体 (0.070 2)、宜昌群体(0.098 2)、沅江群体(0.071 2), 顺德群体与韶关群体(0.1398),嘉鱼群体与梁子湖 群体 (0.070 8)、 宜昌群体 (0.116 2)、 沅江群体 (0.1303),梁子湖群体与宜昌群体(0.1267)、沅江 群体(0.113 0)呈现中等程度的遗传分化;武汉群体 与秋浦群体(0.202 8)、京口群体(0.182 7),嘉鱼群 体与秋浦群体(0.227 2)、京口群体(0.211 0),梁子 湖群体与与秋浦群体(0.1903)、京口群体 (0.193 0), 鄱阳湖群体与秋浦群体(0.185 6), 京口 群体与宜昌群体(0.2347),宜昌群体与沅江群体 (0.166 0)呈现较大程度的遗传分化:剩余群体间则 呈现极大程度遗传分化。本研究的遗传分化程度高 于已有报道的广东养殖群体、安徽养殖群体、湖南野 生群体之间的遗传分化度[10]以及陆水水库(赤壁) 和沅江流域(常德、怀化)的3个野生群体^[14],这可 能由于研究的样本不同以及选择的微卫星位点不同 导致。

本研究中鳜 12 个群体 AMOVA 分析表明:遗 传变异主要来源于群体内(66.86%),其余来源自群 体间(33.14%),群体间的遗传变异所占的比例明显 高于已有报道^[10.14],群体间变异比例高可能与遗传 分化度高存在一定的相关性。

3.3 遗传结构

遗传结构分析显示 12 个鳜群体可分为 5 个亚 群,武汉、嘉鱼、梁子湖、京口(部分)、宜昌、沅江群体 构成一个亚群,鄱阳湖、秋浦、京口(部分)群体构成 一个亚群,韶关、顺德群体构成一个亚群、丹江口群 体构成一个亚群,抚远构成一个亚群,这 5 个亚群的 群体遗传结构具有明显的差异,长江中上游、中下游 的遗传多样性水平较高,这可能是由于这些地区水 系及支流基因交流较多导致,长江水系的遗传多样 性明显高于珠江水系,而黑龙江水系的遗传多样性 最低,这可能与水系流域面积、生境多样性以及人类 活动频率有关。鳜遗传结构与水系的地理位置具有 相关性,这是因为距离近更易于群体间的基因交流, 同一水系由于水流促进基因频繁交流,导致遗传结 构的相似。类似的推论出现在日本沼虾野生群体遗 传变异分析中^[30],以及长江中下游湖泊和云南抚仙 湖黄颡鱼群体遗传结构研究中^[31]。

参考文献

- DOU Y Q,LIANG X F,YANG M,et al. Isolation and characterization of polymorphic EST-SSR and genomic SSR markers in spotted mandarin fish (*Siniperca scherzeri Steindachne*)
 [J/OL]. Genetics & Molecular Research Gmr, 2015, 14(4): 19317[2009-02-14]. https://doi.org/10.4238/2015.december. 29.41.
- [2] FENG B, YI S V.ZHANG M M, et al. Development of novel EST-SSR markers for ploidy identification based on de novo transcriptome assembly for *Misgurnus anguillicaudatus* [J/OL]. PLoS One, 2018, 13 (4): e0195829 [2009-02-14]. https://doi.org/10. 1111/j.1365-2109.2011.02892.x.
- [3] 袁文成,叶金明,黄鹤忠,等. 翘嘴鳜(Siniperca chuatsi) EST-SSR标记与生长性状相关性及4个选育群体遗传结构研究
 [J].海洋与湖沼,2018,49(1):224-231.
- [4] 张飞飞,陈璇,陈志永,等. 黄鳝 EST-SSR 标记的开发及其通 用性检测[J]. 江西农业大学学报,2017,39(4):792-800.
- [5] 李思忠. 鳜亚科鱼类地理分布的研究[J]. 动物学杂志, 1991 (4): 40-44.
- [6] MO A J. SUN J X. WANG Y H. et al. Apparent digestibility of protein, energy and amino acids in nine protein sources at two content levels for mandarin fish, *Sini perca chuatsi* [J/OL]. Aquaculture, 2018; S0044848618308445 [2009-02-14]. https://doi.org/10. 1111/j.1365-2109.2011.02892.x.
- [7] LIU J, CUI Y, LIU J. Food consumption and growth of two piscivorous fishes, the mandarin fish and the Chinese snakehead[J]. Journal of fish biology, 1998, 53(5): 1071-1083.
- LI M L.LI Z J.LIU J S, et al. Maintaining economic value of ecosystem services whilst reducing environmental cost: a way to achieve freshwater restoration in China[J/OL]. PLoS One, 2015, 10
 (3):e0120298[2019-02-14].https://journals.plos.org/plosone/article/id=10.1371/journal.pone.0120298.
- [9] 农业农村部渔业渔政管理局,全国水产技术推广总站,中国水 产学会.2018年中国渔业统计年鉴[M].北京:中国农业出版 社,2018.
- [10] 曾庆凯,孙成飞,董浚键,等. 翘嘴鳜 3 个不同群体的遗传多样 性分析[J]. 基因组学与应用生物学,2017(8):241-250.
- [11] 张进,梁旭方,杨敏,等.2个鳜鱼选育群体遗传多样性分析[J].

水产科学,2014,33(7):447-450.

- [12] 沙航,罗相忠,李忠,等. 基于 COI 序列的长江中上游鲢 6 个地 理群体遗传多样性分析[J].中国水产科学,2018,25(4):81-90.
- [13] 高天珩,田辉伍,王涵,等. 长江上游江津断面铜鱼鱼卵时空分 布特征及影响因子分析[J]. 水产学报,2015,39(8):1099-1106.
- [14]朱滔,梁旭方,彭敏燕,等. 翘嘴鳜 EST-SSR 标记的开发及3个 群体遗传多态性分析[J]. 暨南大学学报(自然科学与医学版),2013,34(3):347-352.
- [15] 瞿春梅. 基于转录组测序的四种鳜属鱼类微卫星标记开发[D]. 武汉:华中农业大学,2013.
- [16] ZHANG J, MA W G, SONG X M, et al. Characterization and development of EST-SSR markers derived from transcriptome of yellow catfish[J]. Molecules, 2014, 19(10):16402-16415.
- [17] EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software structure: a simulation study[J]. Molecular ecology, 2010, 14(8): 2611-2620.
- [18] 赵良杰,彭新亮,郭旭升. 基于转录组数据的银鲷微卫星位点筛 选[J]. 淡水渔业,2018,25(4):81-90.
- [19] 龚诗琦,王志勇,肖世俊,等. 黄姑鱼转录组 SSR 的开发与验证 [J]. 集美大学学报(自然科学版),2016,21(4):241-246.
- [20] DU M, LI N, NIU B Z, et al. De novo transcriptome analysis of Bagarius yarrelli (Siluriformes: Sisoridae) and the search for potential SSR markers using RNA-Seq[J/OL]. PLoS One+2018+13 (2): e0190343[2019-02-14]. https://journals.plos.org/plosone/article/file? id=10.1371/journal.pone.0190343&-type=printable.
- [21] MA H, MA C, LI S, et al. Transcriptome analysis of the mud crab (Scylla paramamosain) by 454 deep sequencing:assembly, annotation, and marker discovery [J/OL]. PLoS One, 2014,9(7):e102668[2019-02-14]. https://journals.plos.org/ plosone/article? id=10.1371/journal.pone.0102668.
- [22] GAO Z, LUO W, LIU H, et al. Transcriptome analysis and SSR/SNP markers information of the blunt snout bream (Megalobrama amblycephala) [J/OL]. PLoS One, 2012, 7 [2009-02-14]. https://journals.plos.org/plosone/article/file? id=10.1371/journal.pone.0042637&type=printable.
- [23] O'CONNELL M, WRIGHT J M. Microsatellite DNA in fishes[J]. Reviews in fish biology & fisheries, 1997, 7(3), 331-363.
- [24] 宋炜,孟永永,蒋科技,等. 棘头梅童鱼七个野生群体遗传多样 性的微卫星分析[J]. 水产学报,2017,41(1):31-39.
- [25] 高峰涛,邵长伟,崔忠凯,等.基于高通量测序的青石斑鱼基因 组微卫星开发及评价[J].中国海洋大学学报(自然科学版), 2017,47(4):52-57.
- [26] SHIKANO T, TANIGUCHI N. Relationships between genetic variation measured by microsatellite DNA markers and a fitness-related trait in the guppy (*Poecilia reticulata*)[J]. Aquaculture,2002,209(1):77-90.
- [27] BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms.[J]. American journal of human genet-

ics,1980,32(3):314-331.

[28] ANTORO S, NA-NAKORN U, KOEDPRANG W. Study of genetic diversity of orange-spotted grouper, *Epinephelus coioides*, from Thailand and Indonesia using microsatellite markers[J]. Marine biotechnology (New York), 2006, 8(1):17-26.

[29] HARTL D L. Principles of population genetics [M]. Sunder-

land, Massachusetts: Sinauer Associates, 1997.

- [30] 马克异,冯建彬,谢楠,等. 钱塘江日本沼虾野生群体遗传变异的 SSR 分析[J]. 动物学研究,2011,32(4):363-370.
- [31] 刘红艳,陈校辉,熊飞.长江中下游湖泊和云南抚仙湖黄颡鱼群 体遗传结构研究[J].华中师范大学学报(自然科学版),2016, 50(2):269-275.

Genetic diversity and population genetic structure of mandarin fish (*Siniperca chuatsi*) based on microsatellite markers

ZENG Kewei¹ SONG Wen¹ WANG Qingyun¹ XIA Rulong¹ WANG Shourong¹ DENG Guoqiao¹ CHENG Weiwei¹ CAO Xiaojuan²

1. Fisheries Research Institude, Wuhan Academy of Agricultural Sciences, Wuhan 430065, China; 2. College of Fisheries, Huazhong Agricultural University, Wuhan 430065, China

Abstract Microsatellites were firstly screened in the Siniperca chuatsi gonadal transcriptome obtained by high-throughput sequencing. A total of 4 986 sequences, which contained microsatellites and could be designed with primers were obtained. Twenty seven (11.30%) out of 239 microsatellite loci were proved to be polymorphic in 12 S. chuatsi populations. The number of alleles per locus ranged from 2 to 8 (5.63 ± 1.84), the effective number of alleles per locus ranged from 1.86 to 6.80 (3.99 ± 1.56), the observed heterozygosity per locus ranged from 0.21 to 0.78 (0.49 ± 0.16), the expected heterozygosity per locus ranged from 0.46 to 0.85 (0.71 ± 0.12), the polymorphic information content per locus ranged from 0.37 to 0.84 (0.66 ± 0.15), and the gene flow per locus ranged from 0.11 to 2.14 (0.67 ± 0.45). The number of alleles and the effective number of alleles per locus in the Jiayu population were the highest among 12 populations. The observed heterozygosity and the expected heterozygosity per locus in the Wuhan population were the highest. The Nei's genetic distance ranged from 0.103 0 to 1.511 7, the Nei's genetic identity ranged from 0.220 5 to 0.902 2. The maximum Nei's genetic distance (1.511 7) and the minimum Nei's genetic identity (0.220 5) were between the Fuyuan population and Shunde population. The minimum Nei's genetic distance (0.103 0) and the maximum Nei's genetic identity (0.902 2) were between the Fuyuan population and Shunde population. UPGMA cluster analysis showed that one branch of the Pearl River system and the other branch of the Yangtze River system gathered firstly and then converged with the branch of the Heilongjiang River. The genetic differentiation coefficient F_{ST} among the 12 groups was 0.041 8-0.611 0, and the genetic differentiation among the groups reached the significant level ($P \le 0.05$). The minimum $F_{sT}(0.041\ 8)$ was between the Liangzihu population and Wuhan population, and the maximum $F_{\rm ST}$ (0.611 0) between the Shunde population and Fuyuan population. AMOVA analysis showed that the genetic variation among populations accounted for 33.14%, and the genetic variation within populations was 66.86%. Structure analysis showed that 12 populations were divided into 5 subpopulations. This study could provide useful basic data for protection of germplasm resources and variety breeding in S. chuatsi.

Keywords microsatellites marker; *Siniperca chuatsi*; transcriptome; genetic diversity; genetic structure