基于遗传和蚁群交互算法的穴盘苗稀植移栽路径优化
DOI:
CSTR:
作者:
作者单位:

石河子大学

作者简介:

通讯作者:

中图分类号:

TP 18

基金项目:

钵苗移栽机低损高速取投栽植一体化关键基础及控制研究(61763042),国家自然科学基金项目(面上项目,重点项目,重大项目)


Optimization of transplanting path of greenhouse plug seedlings based on genetic and ant colony hybrid algorithm
Author:
Affiliation:

Shihezi University

Fund Project:

Research on the key foundation and control of low loss and high speed integration of pot seedling transplanting machine,

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对穴盘苗移栽到低密度穴盘路径规划效率低下问题,本文基于遗传算法和蚁群算法提出蚁群-遗传和遗传-蚁群交互算进行稀植移栽路径优化。通过仿真试验,使用固定顺序法和其他5种算法计算从72-32,72-50,128-50,128-32孔穴盘的移栽路径长度。对比分析了算法在优化路径长度和计算时间上的表现,同时通过相对标准差评估算法的稳定性。试验结果显示,在72孔到32孔穴盘移栽中,遗传-蚁群算法对比固定顺序法平均路径长度缩短了59.3 %,平均计算时间为5.15 S,相对标准差中值约为1.5 %。遗传-蚁群算法平均路径长度缩短了19.2 %,平均计算时间为13.50 s,相对标准差中值约为1 %。研究证明,两种交互算法都提升了原算法的性能,遗传-蚁群算法的综合性能优于蚁群-遗传算法,在不同缺苗数的情况下表现出优越的优化性和极高的稳定性,并且在迭代过程中展现出收敛的行为,具有高效的全局搜索能力,可满足温室穴盘苗稀植移栽优化路径的工作需求,提供了在复杂路径规划问题中选择算法的有力参考依据。

    Abstract:

    Aiming at the problem of low efficiency of path planning from plug seedling transplanting to low density plug, this paper proposes ant colony-genetic and genetic-ant colony interaction algorithms based on genetic algorithm and ant colony algorithm to optimize the sparse planting transplanting path. Through simulation experiments, the fixed sequence method and other five algorithms were used to calculate the transplanting path length from 72-32,72-50,128-50,128-32 hole trays. The performance of the algorithm in optimizing path length and computing time is compared and analyzed, and the stability of the algorithm is evaluated by relative standard deviation. The experimental results showed that the average path length of the genetic-ant colony algorithm was 59.3 % shorter than that of the fixed sequence method in the 72-hole to 32-hole plug transplanting. The average calculation time was 5.15 S, and the relative standard deviation median was about 1.5 %. The average path length of the genetic-ant colony algorithm is shortened by 19.2 %, the average calculation time is 13.50 s, and the median relative standard deviation is about 1 %. The research shows that the two interactive algorithms have improved the performance of the original algorithm. The comprehensive performance of the genetic-ant colony algorithm is better than that of the ant colony-genetic algorithm. It shows superior optimization and high stability in the case of different number of seedlings, and shows convergence in the iterative process. The behavior has efficient global search ability, which can meet the work requirements of the optimal path of thin planting transplanting of greenhouse plug seedlings, and provides a strong reference for selecting algorithms in complex path planning problems.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-30
  • 最后修改日期:2024-09-21
  • 录用日期:2024-09-24
  • 在线发布日期:
  • 出版日期:
文章二维码