数字化无人生猪养殖系统建设及应用
CSTR:
作者:
作者单位:

1.仲恺农业工程学院信息科学与技术学院,广州 510225;2.仲恺农业工程学院自动化学院,广州 510225

作者简介:

郭建军,E-mail:guojianjun@zhku.edu.cn

通讯作者:

刘岳,E-mail:liuyuett@126.com

中图分类号:

S818.9

基金项目:

广东省普通高校特色创新类项目(2023KTSCX048);云浮市省科技创新战略专项市县科技创新支撑项目(2023020101)


Construction and application of digital unmanned system in pig farming
Author:
Affiliation:

1.College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225,China;2.College of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou 510225,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为改善我国绝大多数养殖场面临的生产效率低下、人工清粪、设备体积大、功耗高、感知数据精度低等问题,基于融合机器视觉、大数据、物联网、智能建模、数据库等技术研发数字化无人生猪养殖系统,并建立生猪养殖数字化无人系统的应用示范基地,包括完成生猪养殖智能视觉监控、远程操作系统终端、数字化远程环境监控物联感知及智能科学决策、自动操作提醒、物联智能设备的应用等数字无人化技术。通过建立应用场景,采用人工养殖与数字化无人养殖进行生猪养殖对照试验,以养殖人员工作时长、猪只生长状态和异常行为状态为评价指标。结果显示,本系统通过RKNet结合HAM机制可实现无接触式猪脸识别,猪脸识别模型准确性为99.26%,精确度为99.20%,模型大小仅为1.52 MB。应用数字化无人生猪养殖系统后,养殖员的日均工作时长由4 h降为2.5 h,生猪日均增长质量由1.21 kg提高至1.72 kg,生猪日均异常行为减少36.4%。结果表明,建立数字化无人系统的生猪养殖场能提高生猪养殖效率,降低人工成本,提升生猪养殖业的经济效益。

    Abstract:

    A digital unmanned farming system for pig was developed based on the integration of machine vision, big data, the internet of things (IoT), intelligent modeling, and database technologies to solve the problems including the low efficiency of production, manual removal of manure, large size of equipment, high consumption of power, and the low accuracy of perception data faced by the majority of pig farms in China. A demonstration base for applying digital unmanned systems in pig farming was established. The digital unmanned technologies including intelligent visual monitoring of pig farming, remote operating system terminals, digitalized remote environmental monitoring IoT perception and intelligent scientific decision-making, automatic operation reminders, and the application of IoT intelligent devices were completed. A comparative experiment between the artificial farming and the digital unmanned farming was conducted by establishing application scenarios. The results showed that the established system realized non-contact pig face recognition through RKNet combined with HAM mechanism, with the accuracy of the pig face recognition model of 99.26%, the precision of 99.20%, and the model size of only 1.52 MB. It was deployed in embedded systems. The application of digital unmanned systems in pig farming reduced the average daily working hours of farmer from 4 h to 2.5 h, increased the average daily growth weight of pigs from 1.21 kg to 1.72 kg, and reduced the average daily abnormal behavior of pigs by 36.4%. It is indicated that establishing a digital unmanned system for pig farming can improve the efficiency of farming pig, reducing costs of labor, and increasing the economic benefits of the pig farming industry.

    参考文献
    相似文献
    引证文献
引用本文

郭建军,孔壹右,刘双印,刘同来,曹亮,刘岳.数字化无人生猪养殖系统建设及应用[J].华中农业大学学报,2024,43(5):288-296

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-08
  • 出版日期:
文章二维码