基于改进YOLOv8的实时菠萝成熟度目标检测方法
CSTR:
作者:
作者单位:

1.广东海洋大学电子与信息工程学院,湛江 524088;2.广东省智慧海洋传感网及其设备工程技术研究中心,湛江 524088;3.广东海洋大学数学与计算机学院,湛江 524088

作者简介:

周涛,E-mail:949339627@qq.com

通讯作者:

王骥,E-mail:13902576499@163.com

中图分类号:

TP391

基金项目:

广东省普通高校重点领域新一代信息技术专项(2020ZDZX3008)


Real-time object detection method of pineapple ripeness based on improved YOLOv8
Author:
Affiliation:

1.College of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China;2.Guangdong Intelligent Ocean Sensor Network and Equipment Engineering Technology Research Center, Zhanjiang 524088, China;3.College of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang 524088, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高不同成熟度种植区域的机械采摘菠萝准确率,保证菠萝品质,提出了基于改进YOLOv8的实时菠萝成熟度目标检测方法。针对自然环境下菠萝机械采摘中存在目标小、数量密集和光线遮挡等问题,改进模型把原始YOLOv8模型中主干部分、颈部部分的公共卷积替换成深度可分离卷积(depthwise separable convolution,DSConv),精简模型参数;在融合特征前增加了卷积注意力机制模块(convolutional block attention module,CBAM),使特征融合更关注重要的特征,提升目标检测的准确率;使用EIoU损失函数替换YOLOv8网络原损失函数CIoU,加快网络收敛速度。结果显示,改进模型对菠萝成熟度检测的平均精度均值为97.33%,与Faster R-CNN、YOLOv4、YOLOv5、YOLOv7对比发现,平均精度均值分别提升5.53、7.91、4.38、4.66百分点;在保证检测精度的前提下,算法模型参数量仅为16.8×106。结果表明,改进模型提高了菠萝成熟度识别的精度和推理速度,具有更强的鲁棒性。

    Abstract:

    A real-time object detection method of pineapple ripeness based on improved YOLOv8 was proposed to improve the accuracy of mechanical harvesting of pineapples in planting areas with different ripeness and ensure the quality of pineapples. The improved model replaced the common convolutions in the backbone and neck parts of the original YOLOv8 model with depth-wise separable convolutions (DSConv) to streamline parameters of model to solve the problems of small object size, dense quantity, and light occlusion of picked mechanical pineapple picking in natural environments. Convolutional block attention mechanism (CBAM) module was introduced before feature fusion to prioritize important features and improve the accuracy of object detection. The original loss function CIoU of YOLOv8 network was replaced with the EIoU loss function to accelerate the speed of network convergence. The results showed that the mean of average precision (PmA) of the improved model for detecting the pineapple ripeness was 97.33%. The PmA of improved model was 5.53, 7.91, 4.38, and 4.66 percentage points higher than that of Faster R-CNN, YOLOv4, YOLOv5 and YOLOv7, respectively. The number of parameters of the algorithm model was only 16.8×106 on the premise of ensuring the accuracy of detection. It is indicated that the improved model improves the accuracy and inference speed of recognizing pineapple ripeness, and has stronger robustness.

    参考文献
    相似文献
    引证文献
引用本文

周涛,王骥,麦仁贵.基于改进YOLOv8的实时菠萝成熟度目标检测方法[J].华中农业大学学报,2024,43(5):10-20

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-08
  • 出版日期:
文章二维码