土壤酸化对樱桃番茄养分积累和分配的影响

高国震1,2,董治浩1,2,胡承孝1,2,谭启玲1,2,李进学1,2,3

1.园艺植物生物学教育部重点实验室,武汉 430070;2.新型肥料湖北省工程实验室/华中农业大学微量元素研究中心,武汉 430070;3.云南省农业科学院热带亚热带经济作物研究所,瑞丽 678600

摘要 为研究土壤酸化对土壤养分有效性以及植物吸收、积累、分配养分的影响,采用盆栽试验,以酸性红壤(pH 5.05)、樱桃番茄(Lycopersivon esculentum Mill) 为试验材料,浇施柠檬酸-磷酸氢二钠缓冲液和碳酸钠-碳酸氢钠缓冲液调节土壤pH,使土壤pH下调至4.0,5.0及上调至6.0和7.0,试验共4个处理,每处理5个重复,测定了土壤酸化对樱桃番茄植株生长、植株体内养分含量和积累分配的影响。结果显示,通过缓冲液调节,实测土壤pH为4.35、4.92、5.89、6.85;土壤酸化显著降低樱桃番茄叶面积、生物量尤其是根系生物量,降低植株根冠比;土壤酸化严重抑制氮、磷、钾、镁、铁在番茄根系的积累,而促进铁、锰在茎秆和钙、镁在叶片的积累分配,使根系氮、磷、钾、钙、镁、铁积累量显著降低,茎秆积累氮、钾、铁、锰较多,叶片积累磷、钙、镁较多,特别是植株各部位锰含量显著提高。结果表明,根系是樱桃番茄植株受土壤酸化抑制最严重、最敏感的部位,并因此导致多数养分被根系吸收,迁移受阻,积累显著下降。

关键词 樱桃番茄; 土壤酸化处理; 养分积累; 养分分配; 迁移系数; 土壤治理

土壤酸化是农业可持续发展面临的突出问题之一。土壤酸化通过改变土壤营养元素存在状态和有效性而直接影响果树生长发育,也影响柑橘营养元素吸收导致果实品质变化[1]。土壤pH降低会限制阳离子的流入,导致K+、Ca2+、Mg2+等养分离子吸附量显著减少,土壤养分加速淋失[2];土壤酸化导致土壤胶体氢离子含量升高,加速Al、Mn等金属元素从土壤颗粒上脱离而增加游离态Mn2+、Al3+ [3-4],大量游离Mn2+被作物吸收,引发过量Mn抑制作物吸收Mg2+,导致叶绿体结构破坏、叶绿素合成下降和光合速率降低[5-6]。但土壤酸化是否影响植物养分积累、分配还鲜有报道。

一般采用强酸强碱来定时调节土壤酸碱度。如刘佳兴[7]采用盐酸和熟石灰调节土壤pH;宋建国等[8]采用浓硫酸处理土壤;陈平平等[9]采用硫酸和氢氧化钠调节土壤pH。但采用强酸强碱调节土壤pH存在着2个弊端:一是因为土壤本身的酸碱缓冲能力,需要长期定时浇灌强酸强碱,导致Na+、Cl-含量较高,造成土壤板结;二是长期浇灌强酸强碱容易导致根系不断受损,影响试验结果。土壤自身是一个缓冲液体系,采用酸碱缓冲液调节延长土壤pH调节值,避免伤害根系。因此,本试验采用柠檬酸-磷酸盐缓冲液和碳酸盐缓冲液调节土壤pH值,采用盆栽试验种植樱桃番茄(Lycopersivon esculentum Mill),研究土壤酸化对植物养分吸收积累、迁移分配的影响,以期为酸化土壤治理利用和提高养分效率提供依据。

1 材料与方法

1.1 试验材料

供试番茄品种为樱桃番茄 (Lycopersivon esculentum Mill);供试土壤为酸性红壤,其理化性质:pH 5.05,碱解氮 47.95 mg/kg,速效磷3.28 mg/kg,速效钾 81.49 mg/kg,有效铁4.88 mg/kg,有效锰 18.13 mg/kg,有效铜 0.28 mg/kg,有效锌 0.42 mg/kg,有效钙 425.44 mg/kg,有效镁 65.68 mg/kg。

1.2 试验设计

采用盆栽试验,在华中农业大学校内试验场进行,用25 cm × 40 cm (直径×深度)陶瓷缸,每盆装过筛 (孔径5 mm) 风干土壤5 kg。

参考陈平平等[9]的方法,采用缓冲液调节土壤pH值。试验共4个处理,每个处理5个重复,每盆肥底 (N 1.35 g,P2O5 1.24 g,K2O 1.25 g) 为尿素1.39 g、KNO3 2.69 g、NH4H2PO4 2.02 g,其中pH 4.0条件下处理尿素1.57 g、KNO3 2.69 g、NH4H2PO4 1.40 g,以扣除缓冲液添加的磷,每盆加入阿农营养液以补充微量元素不足。

2018年4月10日,每盆移栽长势一致、无病虫害的樱桃番茄苗2株;2018年5月12日,测定各处理土壤pH并微调;2018年7月10日收获,采集土壤样品测定土壤pH(实测pH值)和矿质养分含量;采集番茄叶、根、茎样品,105 ℃杀青后在65 ℃烘干至恒质量,称干质量,再用不锈钢磨样机磨成粉末,测定根、茎、叶养分含量。

1.3 测定方法

植物样品:采用半微量蒸馏法测定氮含量,火焰光度计测定钾含量,紫外分光光度计比色法测定磷含量,原子吸收分光光度计法测定铁、锰、钙、镁含量。

土壤样品:采用碱解-扩散法测碱解氮含量,碳酸氢钠浸提-钼锑抗比色法测定速效磷含量,乙酸铵交换-火焰光度计法测定速效钾含量,乙酸铵交换-原子吸收分光光度计法测定有效钙、有效镁含量,DTPA浸提-原子吸收分光光度计法测定有效铁、有效锰含量,水浸提-电位法测定pH[10]

1.4 数据分析

采用Excel 2003处理数据,SPSS PASW Statistics 18.0 统计分析,Origin 9.0绘图。

采用自上而下养分含量比即根/土(R/S)、茎/根(S/R)和叶/茎(L/S)表示迁移系数,说明元素由下而上迁移能力大小。

2 结果与分析

2.1 缓冲液调节后土壤的pH值

采用柠檬酸-磷酸氢二钠(pH=2.2)和碳酸钠-碳酸氢钠(pH=10.3)缓冲液调节土壤pH值,实测各处理土壤pH值分别在4.09~4.72、4.85~5.02、5.83~5.95、6.55~7.08,均值依次为4.35、4.92、5.89、6.85,比土壤本身pH值5.05下降0.70、0.13,提高0.84和1.80个pH单位,仅在试验开始后第32 天微调1次。

1 采用缓冲液调节后各处理土壤实测pH值

Fig.1 The tested pH value of different treatments
soils after adjusted by buffer solution

2.2 土壤酸化对樱桃番茄植株生长的影响

土壤酸化显著影响樱桃番茄植株生长(表1、表2)。以土壤pH 7作为对照,随着土壤酸化加剧或pH值下降,pH 6、pH 5和pH 4处理番茄植株生物量即干物质积累量,根系分别下降37.6%、61.5%、56.4%,总量分别下降18.4%、20.7%、20.0%,而茎秆和叶片干质量随土壤酸化程度加剧无显著性差异;pH 4、pH 5、pH 6和pH 7处理的植株根冠比分别为33.33%、30.61%、50.00%、69.23%,由此说明,土壤酸化显著抑制植株根系生长,使植株根冠比降低。

樱桃番茄叶面积、茎粗及株高随土壤酸化程度的变化各异(表2)。以土壤pH 7为对照,pH 4、pH 6下,番茄植株叶面积分别显著下降12.6%、23.7%,即pH 6以下,酸化显著影响番茄生长,叶面积显著下降;番茄植株以pH 4处理较高,pH 5、pH 6、pH 7处理番茄植株株高分别下降34.0%、21.8%、4.5%。因此,土壤酸化抑制植株叶片生长而使叶面积下降,土壤强酸性使樱桃番茄植株高而叶面少,表现为根系弱而植株高。

2.3 土壤酸化对植株收获后土壤速效养分含量的影响

土壤酸化显著影响樱桃番茄植株收获后土壤速效养分含量(表3)。收获后土壤速效N、P含量随土壤酸化程度加剧而升高,尤其是强酸性(pH 4)土壤增加显著;但速效钾含量增加幅度下降,这可能是土壤酸化抑制植物吸收和调节土壤养分有效性的综合结果。

1 土壤不同酸化处理下樱桃番茄各部位干物质积累量
Table 1 Dry matter in different organs of Lycopersivon esculentum Mill under different degrees of soil acidification

处理Treatment根 Root均值/(g/plant) AV占比/%Ratio下降/%Reduction茎 Stem均值/(g/plant) AV占比/%Ratio下降/%Reduction叶 Leaf均值/(g/plant) AV占比/%Ratio下降/%Reduction总量 Total均值/(g/plant) AV下降/%ReductionpH 40.51±0.06c7.056.45.28±0.28a72.116.11.53±0.13a20.99.57.32±0.32b20.0pH 50.45±0.05c6.261.55.34±0.60a73.615.11.47±0.06a20.213.07.26±0.64b20.7pH 60.73±0.08b9.837.65.28±0.16a70.716.11.46±0.11a19.513.67.47±0.02b18.4pH 71.17±0.05a12.8-6.29±0.34a68.7-1.69±0.08a18.5-9.15±0.28a-

注:同列数据后不同字母表示处理间差异显著,P<0.05,下同。Note: Values followed by different letters are significant different,P<0.05,the same as below.

2 土壤不同酸化处理下樱桃番茄的生理指标
Table 2 Growth indexes of Lycopersivon esculentum Mill under different degrees of soil acidification

处理Treatment叶面积/mm2Leaf area下降/%Reduction茎粗/mmThick stem下降/%Reduction株高/cmPlant height下降/%ReductionpH 4270.41±18.18b23.76.44±0.34a-1.946.85±2.58a-pH 5307.32±3.08b13.35.60±0.20a11.430.90±21.20b34.0pH 6309.84±15.06b12.66.57±0.33a-4.036.63±4.91ab21.8pH 7354.43±4.54a-6.32±0.29a-44.73±6.13ab4.5

3 土壤不同酸化处理下植株收获后
土壤速效氮、磷、钾含量
Table 3 Soil available N,P and K content after harvesting
under different degrees of soil acidification mg/kg

处理Treatment碱解氮Available N速效磷Available P速效钾Available KpH 4177.01±12.19a78.80±6.43a269.15±11.97bpH 5179.20±5.85a76.75±5.48ab318.95±10.36apH 6142.24±13.08b61.89±2.03b329.47±4.03apH 7121.10±6.67b61.73±3.72b234.96±3.44cR(n=20)-0.745**-0.645**-0.255

注:R代表土壤pH与各元素的相关系数。*表示差异显著(P<0.05),**表示差异非常显著(P<0.01),下同。Note:R represents the correlation coefficient between soil pH and mineral element,the same as below. Correlation is very significant at the 0.01 level,correlation is significant at the 0.05 level,the same is below. 土壤酸化显著影响樱桃番茄植株收获后土壤有效钙、镁、铁、锰含量(表4)。以土壤pH 7作为对照,随着土壤酸化加剧或pH值下降,pH 6、pH 5和pH 4处理番茄植株收获后土壤有效钙含量分别下降7.0%、12.0%、4.9%,有效镁含量分别下降6.8%、11.9%、11.0%,而有效铁含量分别下降24.8%和增加1.8%、50.2%,有效锰含量分别下降3.7%和增加83.9%、210.5%。由此说明,土壤酸化尤其是强酸性(pH 4)极大地提高土壤锰、铁的有效性,而一定程度降低土壤钙、镁的有效性。

2.4 土壤酸化对樱桃番茄体内养分含量及积累分配的影响

土壤酸化对樱桃番茄根系、茎秆、叶片的氮、磷、钾含量及其积累量的影响各不相同(表5、6)。

4 土壤不同酸化处理下植株收获后土壤中有效微量元素含量
Table 4 Concentrations of soil available medium and micro-nutrient after harvesting under different degrees of soil acidification mg/kg

处理Treatment有效铁Available Fe有效锰Available Mn有效钙Available Ca有效镁Available MgpH 411.97±0.51a65.11±2.82a443.17±13.66ab65.34±1.70bpH 58.12±0.26b38.56±2.39b410.06±18.27b64.72±2.14bpH 65.99±0.12c20.20±0.54c433.17±13.88ab68.78±1.87abpH 77.97±0.19b20.97±0.58c465.87±8.08a73.46±0.62aR(n=20)-0.401**-0.622**0.1250.385**

樱桃番茄植株氮含量高低顺序依次是:叶片>茎秆>根系,株根系和叶片氮含量随土壤酸化而下降;番茄植株磷含量以叶片较高而植茎秆、根系差异不大,随着土壤酸化加剧,pH 6、pH 5和pH 4与pH 7处理番茄植株根系、茎秆的磷含量无明显差异,pH 5、pH 4与pH 7处理相比,叶片磷含量分别显著下降21.6%和18.9%,意味着土壤酸化只降低樱桃番茄叶片磷含量;植株钾含量以根系较低而叶片、茎秆较高,叶片钾含量随土壤pH值降低差异不显著,茎秆和叶片钾含量与土壤pH值呈极显著负相关关系,因此,土壤酸化提高了樱桃番茄地上部尤其是茎秆的钾含量。

氮从土壤向根系的迁移能力强但受土壤酸化抑制,而地上部氮迁移系数较小且受土壤酸化影响不大;磷从土壤向根系和从茎秆到叶片迁移能力较强且受土壤酸化抑制;钾从土壤到根系的迁移系数(R/S)在20.1~24.7,pH 4(强酸性)较pH 7处理下降18.6%;根系到茎秆的迁移系数在1.57~2.74,pH 4较pH 7处理提高60.2%;茎秆到叶片的迁移系数在1.15~1.37,且随pH值升高而提高。

5 土壤不同酸化处理下樱桃番茄不同部位氮、磷、钾含量
Table 5 N,P and K contents in different parts of

Lycopersivon esculentum Mill under different degrees of soil acidification

器官Organ处理TreatmentN/%P/%K/%根 RootpH 41.97±0.04c0.07±0.01a0.54±0.01bpH 51.97±0.05c0.08±0.00a0.78±0.05apH 62.16±0.08b0.07±0.00a0.73±0.03apH 72.32±0.02a0.08±0.01a0.58±0.03b茎 StempH 43.33±0.06a0.06±0.00a1.48±0.17apH 53.14±0.37a0.06±0.01a1.25±0.04abpH 63.40±0.05a0.08±0.00a1.15±0.04bpH 73.58±0.04a0.07±0.01a0.99±0.03b叶 LeafpH 43.54±0.04c0.30±0.01b1.70±0.06apH 54.09±0.05b0.29±0.03b1.47±0.18apH 64.46±0.01a0.40±0.00a1.47±0.08apH 74.07±0.02b0.37±0.01a1.36±0.04aR(n=36)根 Root0.856**0.0860.054茎 Stem0.3620.355-0.797**叶 Leaf0.663**0.701*-0.586**

图2表明,樱桃番茄植株氮积累量及其占比高低顺序为茎秆>叶片>根系,土壤酸化显著降低植株各部位氮积累量。氮从土壤经根系到茎秆、叶片的迁移系数下降而以茎秆积累氮为主;土壤酸化抑制氮由土壤向根系迁移,使植株各部位氮积累量以及根系氮含量及其占总量的比例下降。

6 土壤不同酸化处理下樱桃番茄各部位氮、
磷、钾养分迁移系数
Table 6 Migration coefficient of N,P,and K in different
parts of Lycopersivon esculentum Mill under
different degrees of soil acidification

元素Element处理Treatment根/土R/S 茎/根S/R叶/茎L/SNpH 4111.3 1.69 1.06 pH 5109.9 1.59 1.30pH 6151.8 1.57 1.31 pH 7191.6 1.54 1.14 PpH 48.8 0.86 5.00 pH 510.4 0.75 4.83 pH 611.3 1.14 5.00 pH 713.0 0.86 5.28 KpH 420.1 2.74 1.15 pH 524.4 1.60 1.18 pH 622.2 1.57 1.28 pH 724.7 1.71 1.37

2 土壤不同酸化处理下樱桃番茄不同部位氮(A)、磷(B)、钾(C)养分积累量

Fig.2 Accumulation of N(A),P(B)and K(C)in different parts of Lycopersivon esculentum Mill under
different degrees of soil acidification

随着土壤酸化程度加剧,樱桃番茄根系磷积累量降低,叶片磷积累量提高而茎秆磷积累量无显著性差异。土壤酸化抑制磷由土壤向根系迁移,从而降低植株根、叶的磷积累量,并降低根系磷占总量比例,提高了叶片、茎秆磷占总量比例,即土壤酸化使更多的磷分布于叶片。

随着土壤酸化,pH 6、pH 5和pH 4处理番茄植株根系钾积累量随pH值下降而减小;茎秆钾积累量占比在67.59%~72.76%,随pH值下降而提高;处理间叶片钾积累量没有显著差异。因此,土壤酸化尤其是强酸性显著降低植株根系而提高茎秆钾含量、钾积累量及其占总量比例,而对叶片钾积累、分配影响不大。

表7表明,樱桃番茄植株铁含量以根系较高而茎秆、叶片较低,随着土壤酸化加剧,植株茎秆和叶片铁含量有升高的趋势而根系铁含量呈下降趋势。植株锰含量以叶片较高而茎秆、根系较低,根、茎和叶锰含量与土壤pH值呈极显著负相关,土壤酸化促进樱桃番茄植株各部位对锰的吸收。植株钙、镁含量以叶片较高而根系、茎秆较低,随着土壤酸化加剧,各处理间植株茎秆和叶片钙、镁含量无明显差异,但根系镁含量与土壤pH值呈显著正相关,即土壤酸化抑制了根系对镁的吸收。

7 土壤不同酸化处理下樱桃番茄各部位钙、镁、铁、锰含量
Table 7 Contents of Ca,Mg,Fe and Mn in different parts of Lycopersivon esculentum Mill under different degrees of soil acidification

处理 TreatmentFe/(mg/kg)Mn/(mg/kg)Ca/%Mg/%根 RootpH 42 457.68±217.30b1 151.06±54.89a0.50±0.01a0.04±0.00bpH 51 796.34±115.05c1 156.26±178.95a0.51±0.03a0.05±0.00abpH 62 139.76±124.55bc687.20±65.67b0.61±0.04a0.07±0.01apH 73 022.63±148.55a533.20±21.59b0.55±0.06a0.08±0.01a茎 StempH 4490.09±42.59ab1 220.48±12.56a0.48±0.06a0.06±0.00apH 5462.32±1.80b695.07±85.24b0.34±0.06a0.05±0.01apH 6565.00±14.80a587.51±18.46b0.36±0.05a0.09±0.00apH 7331.78±14.64c430.87±25.01c0.47±0.04a0.10±0.02a叶 LeafpH 4675.67±45.48a1 792.30±124.69a1.66±0.07a0.37±0.04apH 5570.80±24.89b970.41±40.66b1.53±0.13a0.42±0.03apH 6532.79±7.67b800.82±27.30b1.59±0.22a0.40±0.05apH 7490.30±24.33b330.93±16.21c1.32±0.12a0.41±0.07aR(n=36)根 Root0.453-0.835**0.4030.820**茎 Stem-0.463-0.939**-0.0190.604*叶 Leaf-0.831**-0.940**-0.3900.365

表8表明,以土壤pH 7处理为对照,pH 6、pH 5和pH 4处理铁元素由土壤到根系的迁移系数(R/S)随土壤酸化由379.2下降5.8%~45.9%,茎秆到叶片迁移系数由1.48下降9.5%~36.5%;土壤酸化尤其是强酸性促进了锰从根系到茎秆和茎秆到叶片的转运;随土壤酸化,钙由土壤到根系的迁移系数(R/S)在11.3~14.1,变化不大,根系到茎秆的迁移系数在0.59~0.96,以pH 4处理最高;茎秆到叶片迁移系数由2.81分别提高57.3%、60.1%、23.1%;随土壤酸化,镁自土壤到根系的迁移系数(R/S)由10.9分别降低6.4%、33.8%、43.9%,根系到茎秆在1.00~1.50,以pH 4处理最高,茎秆到叶片的迁移系数由4.10分别升高8.3%、104.9%、50.5%。

8 土壤不同酸化处理下樱桃番茄各部位铁、锰、钙、镁迁移系数
Table 8 Migration coefficient of Fe,Mn,Ca and Mg in different parts of Lycopersivon esculentum Mill under different degrees of soil acidification

元素Element处理Treatment根/土R/S 茎/根S/R叶/茎L/SFepH 4205.3 0.20 1.34 pH 5221.2 0.26 1.23 pH 6357.2 0.260.94 pH 7379.2 0.11 1.48 MnpH 417.7 1.06 1.47pH 530.0 0.60 1.40pH 634.0 0.85 1.36pH 725.4 0.81 0.77CapH 411.3 0.96 3.46 pH 512.4 0.67 4.50 pH 614.1 0.59 4.42 pH 711.8 0.85 2.81 MgpH 46.12 1.50 6.17 pH 57.22 1.00 8.40 pH 610.2 1.28 4.44 pH 710.9 1.25 4.10

土壤酸化对番茄植株铁、锰、钙、镁积累量影响各异(图 3)。土壤酸化一定程度上降低了植株根系而提高了茎秆铁积累量及其占比,显著提高根系、茎秆和叶片锰含量及地上部锰积累量而降低了根系锰占总量比例。即土壤酸化推动铁由根系转移到茎秆并提高了整株锰含量尤其是地上部锰积累。钙主要在茎秆和叶片积累,土壤酸化对植株各部位钙含量和茎、叶积累量无显著性影响,但降低了根系钙积累量及其占比,提高了叶片钙占总量比例。土壤酸化尤其是强酸性,抑制镁自土壤到根系迁移和根系到茎秆的迁移,使根系、茎秆镁积累量及其占比显著下降,而叶片镁占比增加,镁主要在地上部尤其是叶片积累。

3 土壤不同酸化下樱桃番茄各部位铁A)、锰(B)、钙(C)、镁(D)积累量

Fig.3 Accumulation of Fe(A),Mn(B),Ca(C) and Mg(D) in different parts of Lycopersivon esculentum
Mill under different degrees of soil acidification

3 讨 论

土壤酸化在土壤形成和发育过程中普遍存在,自然过程和人为影响均可以加剧土壤酸化,进而降低作物生物量,导致细根减少及根系分布上移[11]。本试验结果表明,根系是作物遭受土壤酸化攻击的首要部位。

土壤酸化不同程度提高了植株收获后土壤速效氮、磷、钾和铁、锰含量而降低了有效钙、镁含量。酸性条件下存在的大量游离态H+使含氮有机质更容易转变为有效态氮,有利于被铁氧化物或氢氧化物吸附的Mn2+淋溶出,加速锰的还原溶解[12-13];刘春生等[14]报道,酸雨处理的褐土Ca2+、Mg2+淋失量与土壤pH呈显著正相关。由此说明,土壤酸化对养分有效性或活性的影响是复杂的。

植物组织中的养分含量与积累量可以反映植物的营养状况以及与养分供应浓度的直接关系[15]。岳学文等[16]报道,氮、磷、钾在植物体内移动性强,茎秆是氮、钾最大的储存库,而磷的储存库是叶片。氮、磷、钾自土壤向樱桃番茄根系迁移的能力较强却受土壤酸化尤其是强酸性严重抑制,导致植株根系氮、磷、钾积累量及其占总量比例显著下降,茎秆积累氮、钾较多,叶片积累磷较多;而植株整体氮、磷、钾积累量的下降可能是土壤速效氮、磷、钾含量上升的主要原因。

K-Mg交互作用在养分吸收上表现为拮抗作用,由于K+、Mg2+竞争根系的阳离子吸附位点,当土壤酸化导致土壤K+增多时,就会减少植株根系对Mg2+的吸收[17]。姜勇等[18]报道,施氮导致土壤酸化,加剧了土壤钙、铁的淋失。土壤酸化尤其是强酸性会抑制镁自土壤到根系迁移,但一定程度促进其向地上部尤其是向叶片迁移,使根系、茎秆镁积累量及其占总量比例明显下降而叶片占比增加;镁在植物体内维持稳态平衡、调控光合作用,因此大多集中于叶片部位[19]

土壤pH<5.5时,土壤中可以被植物吸收的锰含量大幅度提高,产生了锰毒害,对养分和水分的吸收速率显著降低,植株生长受阻[20]。根系吸收转运锰离子涉及多种转运蛋白,铁转运蛋白既能够转运铁,又能转运锰离子,但后者的结合能力更强,因此土壤酸化导致锰胁迫而抑制根系对铁的吸收[21]。在植物根系上与Mg2+、Fe2+有相同的结合位点,因此土壤酸化导致锰胁迫是抑制植物根系对铁、镁吸收的主要原因。植物在长期进化中产生了抵抗锰毒害的防卫机制,根系吸收的锰大量聚集在茎[22]。因此,土壤酸化显著降低了根系铁而增加了茎秆铁和地上部锰积累量,尤其是植株各部位锰含量均显著提高,茎秆积累更多铁、锰。

参考文献 References

[1] 张影.湖北宜昌柑橘园微肥施用及酸性土壤改良效果研究[D].武汉:华中农业大学, 2014. ZHANG Y. Study on the application of microelement fertilizer and the remediation of acid soil in the citrus orchard of Yichang,Hubei Province[D].Wuhan:Huazhong Agricultural University,2014 (in Chinese with English abstract).

[2] 杜晨晴,吴秀文,闫磊,等.硼对酸性环境中枳砧幼苗不同部位矿质元素含量及根H+相关酶活力的影响[J]. 华中农业大学学报,2019,38(3):47-52.DU C Q ,WU X W,YAN L,et al.Effects of boron on contents of elements and activities of H+ related enzymes at different parts of trifoliate seedlings in low pH environment[J].Journal of Huazhong Agricultural University,2019,38(3):47-52(in Chinese with English abstract).

[3] 宗良纲,马建锋,徐晓炎,等. 红壤施用不同有机酸解铝毒效果的比较[J]. 农业环境科学学报,2002,21(4):306-308. ZONG L G,MA J F,XU X Y,et al. Role of enveloped organic acids in detoxification of aluminum in eed soil [J]. Journal of agro-environment science,2002,21 (4):306-308(in Chinese with English abstract).

[4] KAZUO S,AKIRA T. Acidity neutralization mechanism in a forested watershed in Central Japan [J]. Water air & soil pollution,1988(3/4):313-329.

[5] 刘鑫,朱端卫,雷宏军,等. 酸性土壤活性锰与pH、Eh关系及其生物反应[J]. 植物营养与肥料学报,2003,9(3):317-323. LIU X,ZHU D W,LEI H J,et al. Dynamic relationship between soil active Mn and pH,Eh in acid soils and its biological response [J]. Journal of plant nutrition and fertilizer,2003,9(3):317-323(in Chinese with English abstract).

[6] 陈欢欢,王玉雯,张利军,等. 我国柑橘镁营养现状及其生理分子研究进展[J]. 果树学报,2019,36(11):1578-1590.CHEN H H,WANG Y W,ZHANG L J,et al. Advances in magnesium nutritional status and its mechanisms of physiological and molecule in citrus[J]. Journal of fruit science,2019,36 (11):1578-1590 (in Chinese with English abstract).

[7] 刘佳兴. 柠檬对土壤pH胁迫水平的响应及其机制[D]. 昆明:云南农业大学,2017. LIU J X. Response of lemon to soil pH stress level and its mechanism [D]. Kunming:Yunnan Agricultural University,2017(in Chinese with English abstract).

[8] 宋建国,刘伟,尚庆昌. 酸胁迫条件下对番茄生长、产量和品质的影响[J]. 环境化学,2005,24(4):423-425. SONG J G,LIU W,SHANG Q C. Effects of acid stress on the growth,yield and quality of tomato [J]. Environmental chemistry,2005,24 (4):423-425(in Chinese with English abstract).

[9] 陈平平,郭莉莉,唐利忠,等. 土壤pH对不同酸性敏感型水稻品种氮利用效率与根际土壤生物学特性的影响[J]. 核农学报,2017(4):757-767. CHEN P P,GUO L L,TANG L Z,et al. Effect of soil pH on nitrogen utilization efficiency and biological characters of rhizosphere soil of rice varieties with different acid-sensitivity [J]. Journal of nuclear agriculture,2017(4):757-767(in Chinese with English abstract).

[10] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2005. BAO S D. Soil agrochemical a analysis [M]. Beijing:China Agricultural Press,2005(in Chinese).

[11] 赵静. 土壤酸化对土壤有效养分、酶活性及黄金梨品质的影响[D]. 泰安:山东农业大学,2011.ZHAO J. Effects of soil acidification on soil available nutrients,soil enzyme activity,and characters of whangkeumbae in pear [D]. Tai’an:Shandong Agricultural University,2011(in Chinese with English abstract).

[12] 胡小凤,王正银,孙倩倩,等. 缓释复合肥料在不同pH值紫色土中氨挥发特性 [J]. 农业工程学报,2009,25(6):100-103. HU X F,WANG Z Y,SUN Q Q,et al. Characteristics of ammonia volatilization of slow release compound fertilizer in different pH values of purple soils [J]. Transactions of the Chinese society of agricultural engineering,2009,25(6):100-103(in Chinese with English abstract).

[13] 张斌. 皂角苷和柠檬酸去除污泥和高岭石中重金属的研究[D].武汉:华中农业大学,2016.ZHANG B. Study on the removal of heavy metals from sewage sludge and kaolinite by saponin and citric acid [D]. Wuhan:Huazhong Agricultural University,2016(in Chinese with English abstract).

[14] 刘春生,杨守祥,宋国菡,等.模拟酸雨对褐土盐基离子淋失的影响[J].土壤通报,1999(1):3-5. LIU C S,YANG S X,SONG G H,et al. The influence of simulated acid rain on the leaching loss of base ions in cinnamon soil [J]. Chinese journal of soil science,1999(1):3-5.(in Chinese with English abstract).

[15] 于钦民,徐福利,王渭玲. 氮、磷肥对杉木幼苗生物量及养分分配的影响[J]. 植物营养与肥料学报,2014,20(1):118-128. YU Q M,XU F L,WANG W L. Effect of nitrogen and phosphorus fertilization on biomass and nutrient distribution of Cunninghamia lanceolate seedlings [J]. Journal of plant nutrition and fertilizer,2014,20(1):118-128(in Chinese with English abstract).

[16] 岳学文,潘志贤,鲍忠祥,等. 有机肥对金沙江干热河谷番茄养分分配的影响[J]. 热带农业科学,2019(9):35-39. YUE X W,PAN Z X,BAO Z X,et al. Effect of organic fertilizer on nutrient distribution of tomato in dry-hot valley of Jinsha River[J]. Tropical agriculture science,2019(9):35-39(in Chinese with English abstract).

[17] 黄鸿翔,陈福兴,徐明岗,等. 红壤地区土壤镁素状况及镁肥施用技术的研究[J]. 土壤肥料,2000(5):20-24. HUANG H X,CHEN F X,XU M G,et al. The research of soil magnesium condition and magnesium fertilizer application technology in red soil region [J]. Soil and fertilizer,2000(5):20-24(in Chinese with English abstract).

[18] 姜勇,徐柱文,王汝振,等. 长期施肥和增水对半干旱草地土壤性质和植物性状的影响[J]. 应用生态学报,2019,30(7):2470-2480. JIANG Y,XU Z W,WANG R Z,et al. Effects of long-term fertilization and water addition on soil properties and plant community characteristics in a semiarid grassland [J]. Chinese journal of applied ecology,2019,30(7):2470-2480(in Chinese with English abstract).

[19] 刘剑锋. 梨果实钙的吸收、运转机制及影响因素研究[D]. 武汉:华中农业大学,2004. LIU J F. Study on mechanism of calcium uptake by pear fruit and its transferring,affecting factors [D].Wuhan:Huazhong Agricultural University,2004(in Chinese with English abstract).

[20] 赵天龙,解光宁,张晓霞,等. 酸性土壤上植物应对铝胁迫的过程与机制[J]. 应用生态学报,2013,24(10):3003-3011. ZHAO T L,XIE G N,ZHANG X X,et al. Process and mechanism of plants in overcoming acid soil aluminum stress[J]. Chinese journal of applied ecology,2013,24(10):3003-3011(in Chinese with English abstract).

[21] PITTMAN J K. Managing the manganese:molecular mechanisms of manganese transport and homeostasis[J]. New phytologist,2005,167(3):733-742.

[22] 张玉秀,李林峰,柴团耀,等. 锰对植物毒害及植物耐锰机理研究进展[J]. 植物学报,2010,45(4):506-520. ZHANG Y X,LI L F,CHAI T Y,et al. Mechanisms of manganese toxicity and manganese tolerance in plants[J]. Chinese journal of botany,2010,45 (4):506-520(in Chinese with English abstract).

Effects of soil acidification on accumulation and distribution of nutrients in cherry tomato

GAO Guozhen 1,2,DONG Zhihao1,2,HU Chengxiao 1,2,TAN Qiling1,2,LI Jinxue1,2,3

1.Key Laboratory of Horticultural Plant Biology of Ministry of Education,Huazhong Agricultural University,Wuhan 430070,China; 2.Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Microelement Research Center,Huazhong Agricultural University,Wuhan 430070,China; 3.Institute of Tropical and Subtropical Economic Crops,Yunnan Academy of Agricultural Sciences,Ruili 678600,China

Abstract The effects of soil acidification on soil nutrient availability and plants nutrient uptake,accumulation and distribution were investigated to provide a basis for soil acidification treatment,especially nutrient efficient utilization. Cherry tomatoes (Lycopersivon esculentum Mill) was used to conduct pot experiment with acidic red soil (pH 5.05). The soil pH was adjusted to 4.0,5.0,6.0 and 7.0 with citric acid-sodium hydrogen phosphate buffer and sodium carbonate-sodium bicarbonate buffer. There were 4 treatments with 5 replicates per treatment in the experiment. The results showed that measured soil pH were 4.35,4.92,5.89,6.85,adjusted down by 0.70,0.13 and increased by 0.84 and 1.80 pH unit,respectively. Soil acidification significantly reduced the leaf area and biomass of cherry tomato,especially the root biomass,and root to shoot ratio. Soil acidification severely inhibited the accumulation of N,P,K,Mg and Fe in roots,promoted the accumulation and distribution of Fe and Mn in stem,and Ca and Mg in leaves. Soil acidification significantly decreased accumulation of N,P,K,Ca,Mg and Fe in roots. More N,K,Fe and Mn was accumulated in stems,more P,Ca and Mg was accumulated in leaves. Particularly,Mn concentration in all parts of plants was raised significantly. It is indicated that the root is the most severe and sensitive part of whole tomato plant inhibited by soil acidification and most nutrients are absorbed by the roots. Soil acidification blocked migration and reduced accumulation significantly.

Keywords Lycopersivon esculentum Mill; soil acidification; nutrient accumulation; nutrient distribution; migration coefficient; soil treatment

高国震,董治浩,胡承孝,等. 土壤酸化对樱桃番茄养分积累和分配的影响[J].华中农业大学学报,2021,40(1):179-186.

DOI:10.13300/j.cnki.hnlkxb.2021.01.022

收稿日期: 2020-05-20

基金项目: 国家现代柑橘产业技术体系养分管理与化肥减施增效岗位(CARS-26)

高国震,E-mail: ggz575402388@163.com

通信作者: 胡承孝,E-mail: hucx@mail.hzau.edu.cn

中图分类号 S 641.2; S 158.3

文献标识码A

文章编号1000-2421(2021)01-0179-08

(责任编辑:赵琳琳)