蛋清源生物活性肽功能及其构效关系研究进展

赵梦鸽,何慧,马爱民,侯焘

华中农业大学食品科学技术学院/环境食品学教育部重点实验室,武汉 430070

摘要 禽蛋为人类提供了丰富的营养物质,如蛋白质、脂质和维生素等。蛋清蛋白不仅具有许多功能性质,通过酶法制备获得的蛋清肽还具有丰富的生物活性。然而,通过水解得到的蛋清源生物活性肽往往具有多种生物活性,且产量较低、结构差异较大,难以获得普适的活性-结构关系结论。本文以鸭蛋蛋清蛋白和鸡蛋蛋清蛋白为对象,综述了蛋清肽的主要生物学功能如降血压、抗氧化、促进矿物质吸收、降血糖、调节肠道健康等,探讨了其结构-活性关系,并对蛋清源生物活性肽的后续深入研究进行了展望,以期为蛋清蛋白的高值化利用提供参考。

关键词 蛋清蛋白; 生物活性肽; 抗氧化; 高值化利用; 促矿物质吸收; 结构-活性关系

我国禽蛋产量长期位居世界第一,主要为鸡蛋和鸭蛋。鸡蛋的主要成分为蛋白质、脂类和水分,分别占总质量的12%~16%、11%~16%和73%~76%,同时还含有少量的维生素和矿物质。咸鸭蛋的蛋清和蛋黄常常被分开食用,咸鸭蛋黄常被用于月饼、粽子等节令食品中,咸鸭蛋清则因其盐分含量高达7%~10%而被遗弃,造成了优质蛋白质资源的极大浪费。蛋清是一种全价蛋白,对其进行高值化利用是十分有意义的研究课题。

蛋清中的蛋白质主要包括卵清蛋白、卵转铁蛋白、卵粘蛋白、溶菌酶、黄素蛋白、蛋白酶抑制剂以及抗生物素蛋白等[1]。蛋清蛋白不仅具有许多需宜的加工功能,比如起泡性、胶凝性、乳化性等,还具有丰富的生物学功能,例如溶菌酶具有很强的抗菌活性,在肉制品生产过程中被用作食品防腐剂,以避免病原菌附着;卵转铁蛋白被用作金属转运蛋白、抗菌剂和抗癌剂;卵粘蛋白和类卵粘蛋白均具有抑制肿瘤的能力,可用作抗癌剂[2]

生物活性肽是蛋白质一级结构中被加密的特殊小肽片段,它们在蛋白质中处于非活性状态。一旦通过水解从母体蛋白中释放出来,就具有调节机体新陈代谢的能力,甚至可以治疗慢性疾病,且很少有副作用[3]。目前,关于生物活性肽的研究十分活跃,受到了众多科学工作者的青睐,其进展日新月异。通过酶水解法获得的蛋清源生物活性肽(egg white peptides,EWPs)不仅具有分子质量小、食用安全、易吸收等特点,还具有许多潜在的生物学功能,如抗氧化、降血压、促进矿物质吸收、抗菌、抗炎症和抗肿瘤等[4]

本文主要以鸭蛋和鸡蛋蛋清蛋白为研究对象,列举了具有不同生物活性的蛋清源生物活性肽,并着重阐述了蛋清源生物活性肽发挥主要生物活性的潜在的作用机制及其结构-活性关系,以期为蛋清蛋白的高值化利用提供参考。

1 蛋清肽的生物学功能及作用机制

1.1 降血压

肾素和血管紧张素转化酶(angiotensin converting enzyme,ACE)是调节健康机体内正常血压的主要物质[5]。ACE抑制剂可抑制血管收缩剂血管紧张素(angiotensin,Ang) Ⅱ的产生,增强血管扩张剂缓激肽的作用[6],从而起到降血压作用。Zambrowicz等[7]将半胱氨酸蛋白酶抑制剂和溶菌酶分离的副产物蛋清蛋白沉淀作为胃蛋白酶水解的蛋白质原料,并通过反相高效液相层析(reversed-phase high performance liquid chromatography,RP-HPLC)进一步分离酶水解产物,对色谱柱分离物显示出最高的ACE抑制活性的组分进行重层析,进一步表征了3个具有ACE抑制活性且IC50值分别为69.0、25.0和37.6 μg/mL的肽组分。Pokora等[8]利用超滤膜过滤,凝胶过滤色谱和RP-HPLC纯化蛋清蛋白水解液,从中获得了2种新的卵清蛋白来源的四肽:SWVE和DILN,均具有ACE抑制活性。

1.2 抗氧化

氧化应激在动脉硬化、心血管疾病、糖尿病、癌症等慢性疾病中起重要作用,是机体内各种活性氧、活性氮等自由基代谢失衡引起的,抗氧化剂的摄入对清除体内自由基起重要作用[9]。Chen等[10]以二苯基苦基苯肼(diphenylpicryl hydrazine,DPPH)自由基清除能力为指标筛选出具有抗氧化活性的鸡蛋蛋清肽,其DPPH自由基清除率为73.14%。Carrillo等[11]使用胃蛋白酶水解鸡蛋蛋清蛋白中的溶菌酶,在阳离子交换柱上分离抗氧化肽,并利用串联质谱法鉴定了f(109-119) VAWRNRCKGTD、f(111-119) WRNRCKGTD、f(122-129) AWIRGCRL、f(123-129) WIRGCRL和f(124-129) IRGCRL5五个阳离子肽段,并通过斑马鱼幼体动物模型发现5种寡肽均能有效抑制脂质过氧化。Nimalaratne等[12]采用超滤-低分子质量截留膜、阳离子交换层析和RP-HPLC层析等纯化步骤对蛋白酶P水解的蛋清蛋白水解产物进行纯化、分离,并采用液相色谱-串联质谱法测定了这些肽的氨基酸序列,筛选出氧自由基吸收光度值最高的2种抗氧化短肽:AEERYP和DEDTQAMP。Zhang等[13]从蛋清蛋白酶解液中鉴定出了新型抗氧化五肽VYLPR,发现其对人胚胎细胞HEK-293具有保护作用,并且能抑制脂质过氧化过程,维持细胞膜完整性,提高抗氧化酶T-SOD和GSH-Px活性。

1.3 促进矿物质吸收

研究证实缺钙可能导致骨质疏松、佝偻病和骨软化症[14]。钙主要在空肠和十二指肠被吸收,吸收方式分为跨细胞转运(主动转运)和旁路转运(被动转运)。钙的主动转运主要存在2种通路:TRPV6和L型(Cav1.3)钙离子通道。当血浆钙浓度较低时,跨细胞转运常常被激活,需要ATP的参与且转运量可饱和。当钙摄入量充足时,旁路转运主要依靠胞内外钙离子浓度差打开细胞间紧密连接,完成钙离子的转运,而其转运无需耗能且转运量不可饱和[15]。据此绘制钙吸收机制示意图,见图1。Hou等[16-17]采用复合蛋白酶水解脱盐咸鸭蛋蛋清蛋白后,通过超滤法制备的脱盐咸蛋清肽(desalted duck egg white peptides,DPs)具有可与酪蛋白磷酸肽相媲美的促钙吸收活性。通过Caco-2单层细胞模型和翻转肠囊模型证明其具有良好的体外促钙吸收能力,DPs能够显著提高Caco-2细胞中TRPV6、CalbindinD9k和PMCA1b的蛋白表达。其机制是DPs通过与小肠TRPV6钙离子通道作用,调节钙离子通道相关蛋白的表达,发挥其促钙吸收作用。通过植酸诱导小鼠缺钙、低钙膳食大鼠、维甲酸致雌激素分泌紊乱大鼠和羊膜内注射小鸡模型系统研究确证了DPs的促钙吸收作用,并从中鉴定出具有高促钙吸收活性的四肽VSEE[16,18-19]。此外,VSEE对骨质疏松同样具有调节作用,其机制是VSEE调节Wnt/β-catenin信号通路,进而激活Runx2和OPG等骨形成基因的表达,从而促进前成骨细胞的增殖、分化和矿化[20]。也有研究将EWPs与多糖/寡糖通过化学法或酶法以共价键方式结合制备肽-糖复合物作为递送钙的载体。壳寡糖-鸭蛋清肽-钙纳米递送体系能够显著增加其携钙能力,具有良好的体内外促钙吸收效果,同时起到调节肠道健康的作用[14]

除了促钙吸收肽以外,Li等[21]通过中性蛋白酶水解脱盐咸鸭蛋清蛋白后,采用高效液相色谱-电喷雾串联质谱联技术从DPs中鉴定了8个关键铁螯合肽,例如PVEE和RSS等,并将鸭蛋清肽-亚铁螯合物灌胃缺铁性贫血大鼠,其缺铁症状可以得到显著改善。此外,Wang等[22]研究发现来源于鸡蛋清蛋白的抗氧化五肽DHTKE具有良好的锌结合能力,可作为递送锌的载体,在胃肠道消化作用下仍能保持其稳定性。

1.4 降血糖

糖尿病是与代谢综合征相关的慢性疾病,其特征是长期高血糖和胰岛素分泌受损,伴有或不伴有胰岛素抗性。蛋清生物活性肽的抗糖尿病功能与其α-葡萄糖苷酶抑制功能、二肽基肽酶-4(dipeptidyl peptidase-4,DPP-4)抑制功能、ACE抑制功能、抗氧化功能以及抗炎功能密切相关[23-24]。据此绘制抗糖尿病作用机制图,见图2。Yu等[25]用碱性蛋白酶水解鸡蛋蛋清蛋白,并利用Fmoc固相合成法进一步合成了8种寡肽,用酶抑制法测定了这些合成肽对α-葡萄糖苷酶和α-淀粉酶的抑制活性。其中,RVPSLM具有抑制α-葡萄糖苷酶的活性,但是,其对α-淀粉酶却无明显或可检测到的抑制作用。蛋清蛋白水解物中提取的ACE抑制肽IRW已被证实对胰岛素抵抗有益,在完全分化的大鼠骨骼肌细胞L6成肌细胞中,IRW通过促进胰岛素受体底物-1(insulin receptor substrate-1,IRS-1)酪氨酸残基和Akt的磷酸化,恢复TNF-α损伤细胞中葡萄糖的摄取以合成糖原,使血糖降低[26]。同时,IRW体外实验显示,通过减少IRS-1丝氨酸磷酸化并增加Akt磷酸化,上调葡萄糖转运因子GLUT-4,减少AngⅡ受体的表达,可抑制活性氧的生成,逆转AngⅡ对胰岛素刺激的L6细胞的葡萄糖摄取[27-28],从而起到抑制糖尿病的作用。

1 钙吸收机制

Fig.1 Mechanism of calcium absorption

IRS-1:胰岛素受体底物-1; GLP-1:胰高血糖样肽-1; “×”表明抑制作用。IRS-1:Insulin receptor substrate-1; LP-1:Glucagon-like peptide-1; “×” is proxy of inhibition function.

2 抗糖尿病作用机制

Fig.2 Mechanism of anti-diabetic

1.5 调节肠道健康及其他

研究表明,蛋清肽可作为一种益生元调节肠道健康。Sun等[29]研究发现,蛋清中的卵粘蛋白经胃蛋白酶-胰蛋白酶消化产生的肽可以显著促进婴儿肠道中双歧杆菌的生长。有研究发现,胃蛋白酶制备的蛋清肽喂养的Zucker肥胖大鼠其肠道总菌、乳酸杆菌/乳酸球菌和柔嫩梭菌水平与正常大鼠更为接近[30]。此外,采用羊膜注射DPs孵化的肉鸡模型,发现DPs能显著促进乳酸菌和双歧杆菌的增殖,抑制大肠杆菌的增殖,提高小肠绒毛面积和杯状细胞直径,增加小肠吸收面积[19],增加肠道内乙酸、丙酸的含量,使肠道内容物pH降低。

此外,蛋清源生物活性肽还被证实有抗菌、抗癌、抗炎等功能。Carrillo等[31]从胃蛋白酶消化的溶菌酶水解物中分离出51条阳离子肽,其中两条肽段YSLGNW和WIRGCRL分别对革兰氏阳性菌和革兰氏阴性菌(如大肠杆菌和葡萄球菌)有很强的抗菌能力。Moon等[32]的研究显示酶解鸡蛋清中卵转铁蛋白得到的水解肽对5种不同的人癌细胞MCF-7、HeLa、HepG2、HT-29和LoVo细胞具有显著的细胞毒性,可作为一种新型治疗人类癌症的方法。Jahandideh等[33]发现以嗜热菌蛋白酶水解释放出的具有抗氧化功能的多肽同样具有体外抗炎功能。

2 蛋清肽构效关系研究

2.1 蛋清源降压肽的构效关系

目前已被报道的大部分蛋清源ACE抑制肽通常为分子质量较小的多肽,包含2~12个氨基酸残基,这可能是由于短肽易与ACE的活性位点相结合。Pokora等[8]利用超滤膜分离蛋清源ACE抑制肽并测定其抑制率,发现分子质量小于 30 ku的组分的抑制率高于全蛋清蛋白水解液。Chen等[10,34]通过胰蛋白酶水解后经3 ku超滤膜截留的EWPs,其ACE抑制活性显著高于粗蛋清蛋白水解液。Fan等[35]采用超滤装置从蛋清蛋白模拟胃消化液中分离出分子质量<3 ku、3~10 ku以及>10 ku的组分并测定ACE抑制活性,其IC50值分别为0.15、2.44和16.93 mg/mL,表明大多数ACE抑制肽存在于分子质量较小的组分中。然而ACE抑制肽的活性并不完全与其分子质量相关,Salim等[36]从蛋清卵白蛋白中鉴定出10个高活性的ACE抑制肽,其中五肽ADHPF、三肽PRM、二肽PR、FR,其IC50值分别为3.54、5.22、5.47、4.53 mg/mL,表明在短链ACE抑制肽中并非氨基酸含量越少抑制活性越高。氨基酸序列同样影响蛋清源生物活性肽的ACE抑制活性,研究表明肽段一级结构C端为Pro、Leu等,N端芳香族氨基酸、碱性氨基酸,氨基酸序列中含有疏水性氨基酸均会影响肽链的ACE抑制活性。大量研究表明,ACE抑制肽的活性与一级结构含有疏水性氨基酸的含量呈正相关[35-40],表1所列氨基酸序列全部含有疏水性氨基酸,而大部分活性肽段C端的3个氨基酸的序列含有疏水性氨基酸,表明除了极少数肽段外,大部分蛋清源ACE抑制肽的抑制活性与C端疏水性氨基酸含量呈正相关。然而疏水性氨基酸并不是影响ACE抑制肽活性的唯一因素,Son等[37]在蛋清卵转铁蛋白中鉴定出的3种ACE抑制肽IRW、IQW和LKP中,三肽LKP的ACE抑制活性最强,表明肽段中C末端具有Pro时,其活性大大增强。如表1所示,当C末端3个氨基酸具有Pro时,其ACE抑制活性较强,然而卵白蛋白中鉴定出的10种具有ACE抑制活性的短肽CF、KM、ELPF、AM、ADHPF、LPR、PR、FR、PRM、GR,其IC50值分别为1.82、1.89、4.24、3.07、3.54、1.30、5.47、4.35、5.22、3.11 mg/mL,这些肽段N端具有Pro时,其ACE抑制活性有所减弱[36]。也有研究表明当蛋清源ACE抑制肽C末端具有Arg或Lys等带正电荷的氨基酸时,其ACE抑制活性有所增强[35,39-40]。N端为芳香族或碱性氨基酸会加强ACE抑制肽的活性,最新研究表明ACE抑制肽的N末端结构对其抑制活性具有重大意义[41]。但是随着蛋清源ACE抑制肽的不断研究,越来越多的肽段结构被发现,表1所示ACE抑制肽的活性似乎没有完全遵照这一规律。ACE抑制肽的抑制活性不能单纯用肽段一级结构氨基酸的数量、种类与排列方式简单描述,与其立体构象也有巨大的关联,但目前关于蛋清源ACE抑制肽的抑制活性与空间结构的关系报道不多,无法形成理论体系。Yu等[39]对蛋清蛋白中提取的六肽TNGIIR进行模拟分子对接,ACE活性位点6个氨基酸残基Ala 354、Gln 281、His 513、Tyr 520、Lys 511和Glu 162为与TNGIIR结合的主要位点,并表明在结合过程中氢键贡献了主要作用。于志鹏等[42]同样采用分子对接技术研究三肽CIK与ACE的对接构型和作用机制,结果表明氢键、疏水、静电等作用力共同对CIK与ACE的结合做出贡献,ACE的Gln 281、His 353、Ala 354、Glu 376、Val 380、His 383等氨基酸残基为其CIK结合的最佳位点。

1 蛋清源ACE抑制肽和抗氧化肽的氨基酸序列
Table 1 Amino acid sequence of egg white derived ACE inhibitor peptides and antioxidant peptides

ACE抑制肽ACE inhibitor peptides参考文献References抗氧化肽Antioxidant peptides抗氧化性的评价方法Evaluation of antioxidant参考文献ReferencesTNGIIR[39]DHTKE氧自由基清除能力Oxygen radical scavenging capacity[22]RADHPFL[39]VAWRNRCKGTD抑制脂质过氧化Inhibition of lipid peroxidation[11]RADHPF[39]WRNRCKGTD抑制脂质过氧化Inhibition of lipid peroxidation[11]YAEERYPIL[39]AWIRGCRL抑制脂质过氧化Inhibition of lipid peroxidation[11]RADHP[39]WIRGCRL抑制脂质过氧化Inhibition of lipid peroxidation[11]YPI[39]IRGCRL抑制脂质过氧化Inhibition of lipid peroxidation[11]RVPSL[39]AEERYP氧自由基清除能力Oxygen radical scavenging capacity[43]ADF[40]DEDTQAMP氧自由基清除能力Oxygen radical scavenging capacity[43]MIR[40]VYLPR抑制脂质过氧化Inhibition of lipid peroxidation[13]CF[36]EVYLPR抑制脂质过氧化Inhibition of lipid peroxidation[13]KM[36]VEVYLPR抑制脂质过氧化Inhibition of lipid peroxidation[13]ELPF[36]VVEVYLPR抑制脂质过氧化Inhibition of lipid peroxidation[13]ADHPF[36]GGLEPNFEDPPH自由基清除能力DPPH radical scavenging capacity[10]IRW[37]YLGAKDPPH自由基清除能力DPPH radical scavenging capacity[10]IQW[37]CFDVFDPPH自由基清除能力DPPH radical scavenging capacity[44]LKP[37]VYQFLABTS自由基清除能力ABTS radical scavenging capacity[44]RVPSL[38]WNWAD氧自由基清除能力Oxygen radical scavenging capacity[44]LAPYK[35]AMDPPH自由基清除能力DPPH radical scavenging capacity[45]LKISQ[35]WNW氧自由基清除能力Oxygen radical scavenging capacity[46]LKYAT[35]WAD氧自由基清除能力Oxygen radical scavenging capacity[46]INKVVR[35]WN氧自由基清除能力Oxygen radical scavenging capacity[46]LFLIKH[35]AD氧自由基清除能力Oxygen radical scavenging capacity[46]LGHWVY[35]LDEPDPLDPPH自由基清除能力DPPH radical scavenging capacity[47]

2.2 蛋清源抗氧化肽的构效关系

蛋清源抗氧化肽的活性与肽段分子质量大小在绝大多数情况下呈正相关,即分子质量越小抗氧化活性越高。在截留分子质量分别为<3 ku、3~10 ku和>10 ku的膜超滤法分离的蛋清蛋白水解物中,小于3 ku的肽段具有最高的DPPH自由基清除能力,即(79.62±1.85)%[45]。此外,从胰凝乳蛋白酶-胃蛋白酶水解的蛋清蛋白水解物中提取生物活性肽产生的小于3 ku的组分比大于3 ku的组分显示出更高的超氧自由基清除能力及三价铁还原能力[48]。大分子肽具有较差的抗氧化能力是因为肽序列较多,这会导致具有清除羟自由基活性的肽产生稀释效应[49]。然而,Sun等[50]采用胃蛋白酶水解蛋清蛋白并通过超滤分级得到4种组分,其抗氧化能力从高到低依次为:2~5 ku、>5 ku、1~2 ku 和<1 ku,并不符合上述规律。因此,适当的低分子质量可以对多肽的抗氧化活性产生显著的影响。表1所列蛋清源抗氧化肽主要为含有2~12个氨基酸残基的短肽,几乎所有肽段都含有疏水性氨基酸,有研究表明N端氨基酸的疏水性与抗氧化能力呈正相关[51]。大部分抑制脂质过氧化的蛋清源抗氧化肽N端含有疏水性氨基酸如Val,抗氧化肽端基疏水性氨基酸的侧链脂肪烃能与不饱和脂肪酸作用或与自由基相结合,从而起到抑制脂质过氧化的作用。Zhang等[13]从蛋清蛋白中鉴定出4种抗氧化肽对脂质有抑制作用,肽浓度在20、60、40、80和100 μmol/L下,4种肽的抗氧化能力始终为:VVEVYLPR >VEVYLPR >VYLPR > EVYLPR,表明N端是否含有Val以及Val的数量会影响肽段抑制脂质过氧化的能力。芳香族氨基酸的存在会大大提高肽段的抗氧化能力,色氨酸侧链中的吲哚环和脯氨酸侧链中的吡咯烷环还可以通过羟基作为供氢体,从而起到抗氧化的作用。张燕等[46]从蛋清蛋白中鉴定出一种新型肽WNWAD,并对其修饰合成短肽WNW、WAD、WN和AD,WNWAD、WNW、WAD、WN这4种肽由于其序列中包含色氨酸均具有较强的氧自由基吸收能力,而AD没有检测到这一效果。

2.3 蛋清源生物活性肽促进矿物质吸收的构效关系

近年来,关于蛋清源生物活性肽促进矿物质吸收作用的构效关系也得以阐述。Hou等[52]从鸭蛋清中分离鉴定出了7条具有高促钙吸收活性的肽段,并以VSEE、VHSS和VHS(p)S(p)为基础合成27条肽段,以此进行构效关系研究。结果表明,对于VSEE,C端第一位为酸性氨基酸是必须的,酸性氨基酸簇如E簇“EE”存在于C端,对促钙吸收作用做出重要贡献,而序列中丝氨酸的磷酸化在发挥促钙吸收作用时是必要的;对于VHSS,C端S簇“SS”能够提高钙的转运量,且丝氨酸的磷酸化可以提高促钙吸收活性。通过分子对接,TRPV6蛋白活性位点中Asp 582、Arg 483、Gln 553、Ile 550是与四肽VSEE结合的主要位点,且氢键与离子键是结合过程中的主要作用;VHSS与TRPV6的活性位点Asp 565、Ser 572、Pro 584、Glu 490和Ile 551以氢键或离子键发生相互作用;VHS(p)S(p)与TRPV6的结合中氢键作出主要贡献,Asp 582、Tyr 564、Pro 584和Gln 553等氨基酸残基是与VHS(p)S(p)结合的最佳位点。

除了促钙吸收肽以外,Li等[21]从DPs中鉴定了8个关键铁螯合肽,例如PVEE和RSS等,发现Glu、Asp、Lys、His、Ser、Cys残基可能在DPs与铁的螯合中起关键作用。此外,Wang等[22]研究发现来源于鸡蛋清蛋白的五肽DHTKE与锌结合的位点主要是Asp侧链上的羧基氧原子以及Glu侧链仲酰胺基团,锌离子与蛋清肽结合可能诱导DHTKE折叠,而且DHTKE-Zn(Ⅱ)配合物表现出更有序的结构。

3 总结与展望

综上所述,生物活性肽是目前非常活跃的研究领域,蛋清肽的生理活性已被不断发掘,且有些研究工作已能较好地阐明其作用机制,一些蛋清源生物活性肽的基础构效关系也已得到揭示,其中,关于ACE抑制肽的构效关系研究最为透彻,已被发现的蛋清源ACE抑制肽大多为分子质量较小的多肽,且受氨基酸序列的影响,当一级结构中C端为Pro、Leu等时,尤其是C末端具有Pro时,其活性大大增强;N端为芳香族氨基酸或碱性氨基酸、氨基酸序列中含有疏水性氨基酸均会影响蛋清肽的ACE抑制活性。此外,蛋清源抗氧化肽的活性与肽段分子质量大小在绝大多数情况下呈正相关,即分子质量越小抗氧化活性越高。N端氨基酸的疏水性与蛋清源生物活性肽的抗氧化能力呈正相关,其中大部分抑制脂质过氧化的蛋清源抗氧化肽N端含有疏水性氨基酸如Val,而芳香族氨基酸的存在会大大提高肽段的抗氧化能力。近年来,蛋清源促钙吸收肽的构效关系也被不断阐明,C端第一位为Glu对于促钙吸收具有重要贡献,而Ser的磷酸化在发挥促钙吸收作用时是非常有必要的。

然而,以上构效关系是否适用于其他来源的生物活性肽还需进一步探究,其普适的构效关系如调节肠道健康、降血糖等生物活性的肽结构特征还需进一步挖掘,大多数的蛋清源活性肽的构效关系尤其是构象关系仍不清楚。此外,蛋清源生物活性肽的产业化研究仍受瓶颈的制约,如:通过水解得到的混合肽往往同时具有多种生理活性,但每种活性的肽段含量却不足以发挥其生物活性;小分子肽分离纯化技术难以应用于大规模的工业生产,生产成本高。

总之,蛋清作为大宗的优质蛋白质资源,其性质温和、来源广泛,虽然上述问题给其深加工利用带来了挑战,但随着对天然功能食品的迫切需求以及对生物活性肽研究的不断深入,蛋清源生物活性肽的制备技术、分离纯化手段、活性机制探讨等也必将更加成熟,在食品、医药领域拥有更为广阔的发展空间。

参考文献

[1] 于志鹏,赵文竹,刘静波. 鸡蛋清中功能蛋白及活性肽的研究进展 [J]. 食品工业科技,2015(7):387-391. YU Z P,ZHAO W Z,LIU J B.Progress in the functional proteins and bioactive peptides of hen egg white[J]. Science and technology of food industry,2015(7):387-391 (in Chinese with English abstract).

[2] CHANG C,LAHTI T,TANAKA T,et al. Egg proteins:fractionation,bioactive peptides and allergenicity [J]. Journal of the science of food & agriculture,2018,98(15):5547-5558.

[3] ISHIDA Y,SHIBATA Y,FUKUHARA I,et al. Effect of an excess intake of casein hydrolysate containing Val-Pro-Pro and Ile-Pro-Pro in subjects with normal blood pressure,high-normal blood pressure,or mild hypertension [J]. Bioscience biotechnology & biochemistry,2011,75(3):427-433.

[4] ABEYRATHNE E D N S,HUANG X,AHN D U. Antioxidant,angiotensin-converting enzyme inhibitory activity and other functional properties of egg white proteins and their derived peptides:a review [J]. Poultry science,2018,97(4):1462-1468.

[5] ALUKO E R. Antihypertensive peptides from food proteins [J]. Annual review of food science and technology,2015,6(1):235-262.

[6] YOUSR M,HOWELL N,YOUSR M. Antioxidant and ACE inhibitory bioactive peptides purified from egg yolk proteins[J]. International journal of molecular sciences,2015,16(12):29161-29178.

[7] ZAMBROWICZ A,TIMMER M,ECKERT E,et al. Evaluation of the ACE-inhibitory activity of egg-white proteins degraded with pepsin [J]. Polish journal of food & nutrition sciences,2013,63(2):103-108.

[8] POKORA M,ZAMBROWICZ A,DABROWSKA A,et al. An attractive way of egg white protein by-product use for producing of novel anti-hypertensive peptides [J]. Food chemistry,2014,151(15):500-505.

[9] 杨锡洪,渠纯纯,李赛,等. 贝类源抗氧化肽研究进展[J]. 食品与机械,2019,35(3):224-230. YANG X H,QU C C,LI S,et al. Research progress in the antioxidant peptides derived from egg protein[J]. Food & machinery,2019,35(3):224-230 (in Chinese with English abstract).

[10] CHEN C,CHI Y J,ZHAO M Y,et al. Purification and identification of antioxidant peptides from egg white protein hydrolysate[J]. Amino acids,2012,43(1):457-466.

[11] CARRILLO W,GOMEZ-RUIZ J A,MIRALLES B,et al. Identification of antioxidant peptides of hen egg-white lysozyme and evaluation of inhibition of lipid peroxidation and cytotoxicity in the Zebrafish model [J]. Eur Food Res Technol,2016,242(10):1777-1785.

[12] NIMALARATNE C,BANDARA N,WU J. Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white[J]. Food chemistry,2015,188:467-472.

[13] ZHANG B,WANG H,WANG Y,et al. Identification of antioxidant peptides derived from egg-white protein and its protective effects on H2O2-induced cell damage [J]. International journal of food science & technology,2019,54(6):2219-2227.

[14] ZHAO M,MA A,HE H,et al. Desalted duck egg white peptides-chitosan oligosaccharide copolymers as calcium delivery systems:preparation,characterization and calcium release evaluation in vitro and vivo [J/OL]. Food research international,2020,131:108974[2020-05-22]. https://doi.org/10.1016/j.foodres.2019.108974.

[15] 郭丹郡,侯焘,何慧. 生物活性肽促钙吸收机制与钙离子通道 [J]. 食品安全质量检测学报,2016,7(11):4531-4535. GUO D J,HOU T,HE H. Mechanism of promoting calcium absorption by bioactive peptide and calcium ion channel[J]. Journal of food safety & quality,2016,7(11):4531-4535 (in Chinese with English abstract).

[16] HOU T,LIU Y,KOLBA N,et al. Desalted duck egg white peptides promote calcium uptake and modulate bone formation in the retinoic acid-induced bone loss rat and Caco-2 cell model [J/OL]. Nutrients,2017,9(5):490[2020-05-22]. https://doi.org/10.3390/nu9050490.

[17] HOU T,WANG C,MA Z,et al. Desalted duck egg white peptides:promotion of calcium uptake and structure characterization [J]. J Agric Food Chem,2015,63(37):8170-8176.

[18] HOU T,LIU W,SHI W,et al. Desalted duck egg white peptides promote calcium uptake by counteracting the adverse effects of phytic acid [J]. Food chemistry,2017,219:428-435.

[19] TAO H,NIKOLAI K,RAYMOND G,et al. Intra-amniotic administration (Gallus gallus) of cicer arietinum and lens culinaris prebiotics extracts and duck egg white peptides affects calcium status and intestinal functionality [J/OL]. Nutrients,2017,9(7):785[2020-05-22].https://doi.org/10.3390/nu9070785.

[20] GUO D,LIU W,ZHANG X,et al. Duck egg white-derived peptide VSEE (Val-Ser-Glu-Glu) regulates bone and lipid metabolisms by Wnt/β-catenin signaling pathway and intestinal microbiota [J]. Molecular nutrition & food research,2019,63(24):1900525[2020-05-22]. https://doi.org/10.1002/mnfr.201900525.

[21] LI B,HE H,SHI W,et al. Effect of duck egg white peptide-ferrous chelate on iron bioavailability in vivo and structure characterization [J]. Journal of the science of food and agriculture,2018,99(4):1834-1841.

[22] WANG D,LIU K X,CUI P B,et al. Egg-white-derived antioxidant peptide as an efficient nanocarrier for zinc delivery through the gastrointestinal system [J]. J Agric Food Chem,2020,68(7):2232-2239.

[23] ZANI S C D C,WU J,CHAN C B. Egg and soy-derived peptides and hydrolysates:a rview of their physiological actions against diabetes and obesity [J/OL]. Nutrients,2018,10(5):549[2020-05-22].https://doi.org/ 10.3390/nu10050549.

[24] WANG X,SON M,MERAM C,et al. Mechanism and potential of egg consumption and egg bioactive components on type-2 diabetes [J/OL]. Nutrients,2019,11(2):357[2020-05-22].https://doi.org/ 10.3390/nu11020357.

[25] YU Z,YIN Y,ZHAO W,et al. Novel peptides derived from egg white protein inhibiting alpha-glucosidase [J]. Food chemistry,2011,129(4):1376-1382.

[26] SON M,WU J P. Egg white hydrolysate and peptide reverse insulin resistance associated with tumor necrosis factor-alpha (TNF-alpha) stimulated mitogen-activated protein kinase (MAPK) pathway in skeletal muscle cells [J]. European journal of nutrition,2019,58(5):1961-1969.

[27] SON M,CHAN C B,WU J. Egg white ovotransferrin-derived ACE inhibitory peptide ameliorates angiotensin Ⅱ-stimulated insulin resistance in skeletal muscle cells[J/OL]. Molecular nutrition & food research,2018,62(4):170062[2020-05-22]. https://doi.org/10.1002/mnfr.201700602.

[28] WANG X,BHULLAR K S,FAN H,et al. Regulatory effects of a pea-derived peptide Leu-Arg-Trp (LRW) on dysfunction of rat aortic vascular smooth muscle cells against angiotensin Ⅱ stimulation[J]. Journal of agricultural and food chemistry,2020,68(13):3947-3953.

[29] SUN X,GäNZLE M,FIELD C J,et al. Effect of proteolysis on the sialic acid content and bifidogenic activity of ovomucin hydrolysates [J]. Food chemistry,2016,212:78-86.

[30] REQUENA T,MIGUEL M,GARCéS-RIMóN M,et al. Pepsin egg white hydrolysate modulates gut microbiota in Zucker obese rats [J]. Food & function,2017,8(1):437-443.

[31] CARRILLO W,LUCIO A,GAIBOR J,et al. Isolation of antibacterial hydrolysates from hen egg white lysozyme and identification of antibacterial peptides [J]. Journal of medicinal food,2018,21(8):808-818.

[32] MOON S H,LEE J H,KIM J H,et al. In vitro cytotoxic and ACE-inhibitory activities of promod 278P hydrolysate of ovotransferrin from chicken egg white[J]. Poultry science,2017,96(6):1982-1987.

[33] JAHANDIDEH F,CHAKRABARTI S,DAVIDGE S T,et al. Antioxidant peptides identified from ovotransferrin by the ORAC method did not show anti-inflammatory and antioxidant activities in endothelial cells [J]. J Agric Food Chem,2015,64(1):113-119.

[34] CHEN C,CHI Y J,ZHAO M Y,et al. Influence of degree of hydrolysis on functional properties,antioxidant and ACE inhibitory activities of egg white protein hydrolysate [J]. Food science and biotechnology,2012,21(1):27-34.

[35] FAN H B,WANG J P,LIAO W,et al. Identification and characterization of gastrointestinal-resistant angiotensin-converting enzyme inhibitory peptides from egg white proteins [J]. J Agric Food Chem,2019,67(25):7147-7156.

[36] SALIM M,GAN C Y. Dual-function peptides derived from egg white ovalbumin:bioinformatics identification with validation using in vitro assay[J/OL]. Journal of functional foods,2020,64:103618[2020-05-22].https://doi.org/10.1016/j.jff.2019.103618.

[37] SON M J,CHAN C B,WU J P. Egg white ovotransferrin-derived ACE inhibitory peptide ameliorates angiotensin Ⅱ-stimulated insulin resistance in skeletal muscle cells[J]. Molecular nutrition & food research,2018,62(4):170062[2020-05-22]. https://doi.org/10.1002/mnfr.201700602.

[38] YU Z,LIU B,ZHAO W,et al. Primary and secondary structure of novel ACE-inhibitory peptides from egg white protein [J]. Food chemistry,2012,133(2):315-322.

[39] YU Z P,GUO H,SHIUAN D,et al. Interaction mechanism of egg white-derived ACE inhibitory peptide TNGIIR with ACE and its effect on the expression of ACE and AT1 receptor [J]. Food science and human wellness,2020,9(1):52-57.

[40] ZHAO W Z,ZHANG D,YU Z P,et al. Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase Ⅳ identified from hen eggs [J/OL]. Journal of functional foods,2020,64:103649 [2020-05-22].https://doi.org/10.1016/j.jff.2019.103649.

[41] LIU C,LIU J,WANG M,et al. Construction and application of membrane-bound angiotensin-I converting enzyme system:a new approach for the evaluation of angiotensin-I converting enzyme inhibitory peptides [J]. J Agric Food Chem,2020,68(20):5723-5731.

[42] 于志鹏,武思佳,赵文竹,等. 蛋清中ACE抑制肽的筛选及其作用机制 [J]. 食品科学,2019,40(22):126-133. YU Z P,WU S J,ZHAO W Z,et al. Identification and binding mechanism evaluation of novel ACE inhibitory peptides from ovalbumin [J]. Food science,2019,40(22):126-133 (in Chinese with English abstract).

[43] SAKAI K,MATSUMOTO K,NISHIKAWA T,et al. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic β-cells [J]. Biochemical & biophysical research communications,2003,300(1):216-222.

[44] ZHANG Y,CHEN Z,ZHAO S,et al. The anti-oxidative effects and mechanism of antioxidant peptides from egg white against oxidative stress injury in human embryonic kidney 293 cells [J]. Journal of Chinese institute of food science and technology,2019,19(10):11-22.

[45] 曹壮,李文钊,王强,等. 蛋清抗氧化肽分离纯化及结构鉴定 [J]. 食品工业科技,2019,40(4):82-85. CAO Z,LI W Z,WANG Q,et al. Isolation,purification and structural identification of antioxidative peptides from egg white[J]. Science and technology of food industry,2019,40(4):82-85 (in Chinese with English abstract).

[46] 张燕,魏汝君,马中苏,等. 蛋清源活性肽对过氧化氢诱导的HEK293细胞谷胱甘肽抗氧化系统的影响 [J]. 中国食品学报,2020,20(2):79-86. ZHANG Y,WEI R J,MA Z S,et al. The effect of bioactive peptides from egg white on glutathione anti-oxidant system against oxidative stress injury in human embryonic kidney 293 cells [J]. Journal of Chinese institute of food science and technology,2020,20(2):79-86 (in Chinese with English abstract).

[47] CHANG O K,HA G E,HAN G S,et al. Novel antioxidant peptide derived from the ultrafiltrate of ovomucin hydrolysate [J]. J Agric Food Chem,2013,61(30):7294-7300.

[48] JIN Y,YING Z,YONG W,et al. Double enzyme hydrolysis for producing antioxidant peptide from egg white:optimization,evaluation,and potential allergenicity [J/OL]. Journal of food biochemistry,2020,44(2):e13113[2020-05-22]. https://doi.org/10.1111/jfbc.13113.

[49] ALZAHRANI M A J,PERERA C O,HEMAR Y. Production of bioactive proteins and peptides from the diatom Nitzschia laevis and comparison of their in vitro antioxidant activities with those from Spirulina platensis and Chlorella vulgatis [J]. International journal of food science & technology,2018,53(3):676-682.

[50] SUN S,NIU H,YANG T,et al. Antioxidant and anti-fatigue activities of egg white peptides prepared by pepsin digestion [J]. Journal of the science of food & agriculture,2014,94(15):3195-3200.

[51] UNO S,KODAMA D,YUKAWA H,et al. Quantitative analysis of the relationship between structure and antioxidant activity of tripeptides [J/OL]. Journal of peptide science,2020,26:e3238[2020-05-22].https://doi.org/10.1002/psc.3238.

[52] HOU T,LU Y,GUO D,et al. A pivotal peptide (Val-Ser-Glu-Glu) from duck egg white promotes calcium uptake and structure-activity relationship study [J]. Journal of functional foods,2018,48:448-456.

Biological functions and structure-activity relationships of bioactive peptides derived from egg white proteins:a review

ZHAO Mengge,HE Hui,MA Aimin,HOU Tao

College of Food Science and Technology,Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology,Wuhan 430070,China

Abstract Eggs provide various of nutrients for human beings,such as proteins,lipids,and vitamins. Besides of the processing properties from egg white,bioactive peptides obtained by the enzymatic hydrolysis method have diversiform biological functions. In this paper,biological functions such as antihypertension,anti-oxidation,prevention of cardiovascular diseases,promoting mineral absorption,anti-diabetes,and regulating intestinal health were summarized,and the structure-activity relationships of egg white peptides from duck egg and chicken egg were also reviewed. It was found that egg white-derived angiotensin-converting enzyme (ACE) inhibitory peptides could affect their ACE inhibitory activity when the C-terminal was proline,leucine,and the N-terminal was aromatic or alkaline amino acid. Hydrophobic amino acids in N-terminal,and aromatic amino acids in the primary structure of antioxidant peptides from egg white can greatly improve the antioxidant capacity of the peptides. Glutamic acid in the first C-terminal,and phosphorylation of serine in the sequence of egg white-derived calcium absorption peptides play an important in the calcium absorption. However,bioactive peptides obtained by hydrolysis were confirmed to have different bioactivities,low yield and significantly different structures,making it difficult to obtain universal structure-activity relationship conclusions. Thus,the purpose of this paper is to provide a basis for the high-valued utilization of egg white,and a certain application for the production of egg white bioactive peptides as nutritional supplements,functional nutritional health products and therapeutic drugs,as well as to put forward a new prospect for the research of bioactive peptides.

Keywords egg white proteins; bioactive peptide; anti-oxidation; high value utilization; promoting minerals absorption; structure-activity relationship

赵梦鸽,何慧,马爱民,等. 蛋清源生物活性肽功能及其构效关系研究进展[J].华中农业大学学报,2020,39(5):167-175.

DOI:10.13300/j.cnki.hnlkxb.2020.05.023

收稿日期: 2020-05-22

基金项目: 国家自然科学基金项目(31801549)

赵梦鸽,博士研究生. 研究方向:生物活性肽与分子营养. E-mail: zhaomenggehzau@163.com

通信作者: 侯焘,博士,讲师. 研究方向: 生物活性肽与分子营养. E-mail: houtao@mail.hzau.edu.cn

中图分类号 TS 253.9

文献标识码A

文章编号1000-2421(2020)05-0167-09

(责任编辑:赵琳琳)